REGULATIONS & SYLLABUS

Bachelor of Pharmacy
As per the PCI Norm
(w.e.f. 2017-18 admitted batch)

Website: www.gitam.edu
BACHELOR OF PHARMACY (B. Pharm.)
REGULATIONS as per PCI norms
(w. e. f. 2017-18 admitted batch)

1. ADMISSIONS
1.1. Admissions into B. Pharm. programme of GITAM University are governed by GITAM University admission regulations.

2. ELIGIBILITY CRITERIA
2.1. A pass in 10+2 or equivalent examination approved by GITAM University with Physics, Chemistry and Mathematics/ Biology.
2.2. Admissions into B. Pharm. will be based on All India Entrance Test (GITAM Admission Test - GAT) conducted by GITAM University and the rule of reservation is followed wherever applicable.

3. DURATION OF THE PROGRAMME
The course of study for B. Pharm. shall extend over a period of eight semesters (four academic years).

4. MEDIUM OF INSTRUCTION AND EXAMINATIONS
Medium of instruction and examination shall be in English.

5. WORKING DAYS IN EACH SEMESTER
Each semester shall consist of not less than 100 working days. The odd semesters shall be conducted from the month of June/July to November/December and the even semesters shall be conducted from November/December to April/May in every calendar year.

6. ATTENDANCE AND PROGRESS
A candidate is required to put in at least 80% attendance in individual courses considering theory and practical separately. The candidate shall complete the prescribed course satisfactorily to be eligible to appear for the respective examinations.

7. PROGRAMME/COURSE CREDIT STRUCTURE
As per the philosophy of Credit Based Semester System, certain quantum of academic work viz. theory classes, tutorial hours, practical classes, etc. are measured in terms of credits. On satisfactory completion of the courses, a candidate earns credits. The amount of credit associated with a course is dependent upon the number of hours of instruction per week in that course. Similarly, the credit associated with any of the other academic, co/extra-curricular activities is dependent upon the quantum of work expected to be put in for each of these activities per week.

7.1. CREDIT ASSIGNMENT
7.1.1. Theory and Laboratory courses
Courses are broadly classified as Theory and Practical. Theory courses consist of lecture (L) and/or tutorial (T) hours, and Practical (P) courses consist of hours spent in the
laboratory. Credits (C) for a course is dependent on the number of hours of instruction per week in that course, and is obtained by using a multiplier of one (1) for lecture and tutorial hours, and a multiplier of half (1/2) for practical (laboratory) hours. Thus, for example, a theory course having three lectures and one tutorial per week throughout the semester carries a credit of 4. Similarly, a practical having four laboratory hours per week throughout semester carries a credit of 2.

7.2. Minimum credit requirements
The minimum credit points required for award of a B. Pharm. degree is 208. These credits are divided into theory courses, tutorials, practical, practice school and project over the duration of eight semesters. The credits are distributed semester-wise as shown in Table IX. Courses generally progress in sequences, building competencies and their positioning indicates certain academic maturity on the part of the learners. Learners are expected to follow the semester-wise schedule of courses given in the syllabus.

8. ACADEMIC WORK
A regular record of attendance both in theory and practical shall be maintained by the teaching staff of respective courses.

9. COURSE OF STUDY
The course of study for B. Pharm. shall include semester wise theory & practical as given in Table – I to VIII. The number of hours to be devoted to each theory, tutorial and practical course in any semester shall not be less than that shown in Table – I to VIII.
Table-I: Course of study for semester I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 101T</td>
<td>Human Anatomy and Physiology I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 102T</td>
<td>Pharmaceutical Analysis – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 103T</td>
<td>Pharmacetics – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 104T</td>
<td>Pharmaceutical Inorganic Chemistry – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 105T</td>
<td>Communication skills – Theory *</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 106RBT/</td>
<td>Remedial Biology/ Remedial Mathematics – Theory*</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP106RMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 107P</td>
<td>Human Anatomy and Physiology I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 108P</td>
<td>Pharmaceutical Analysis – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 109P</td>
<td>Pharmacetics – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 110P</td>
<td>Pharmaceutical Inorganic Chemistry – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 111P</td>
<td>Communication skills – Practical*</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>BP 112RBP</td>
<td>Remedial Biology – Practical*</td>
<td>2</td>
<td>-</td>
<td>NC</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32/34/36#</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.

$ Applicable ONLY for the students studied Physics / Chemistry / Botany at HSC and appearing for Remedial Mathematics (RM) course.

* Non University Examination (NUE)

Table-II: Course of study for semester II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 201T</td>
<td>Human Anatomy and Physiology II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 202T</td>
<td>Pharmaceutical Organic Chemistry I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 203T</td>
<td>Biochemistry – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 204T</td>
<td>Pathophysiology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 205T</td>
<td>Computer Applications in Pharmacy – Theory *</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BP 206T</td>
<td>Environmental sciences – Theory *</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>BP 207P</td>
<td>Human Anatomy and Physiology II – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 208P</td>
<td>Pharmaceutical Organic Chemistry I– Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 209P</td>
<td>Biochemistry – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 210P</td>
<td>Computer Applications in Pharmacy – Practical*</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

* Non University Examination (NUE)
Table-III: Course of study for semester III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>

Table-IV: Course of study for semester IV

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 401T</td>
<td>Pharmaceutical Organic Chemistry III– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 404T</td>
<td>Pharmacology I – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 405T</td>
<td>Pharmacognosy and Phytochemistry I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 408P</td>
<td>Pharmacology I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 409P</td>
<td>Pharmacognosy and Phytochemistry I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>31</td>
<td>5</td>
<td>28</td>
</tr>
</tbody>
</table>

Table-V: Course of study for semester V

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 501T</td>
<td>Medicinal Chemistry II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 502T</td>
<td>Industrial Pharmacy I– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 503T</td>
<td>Pharmacology II – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 504T</td>
<td>Pharmacognosy and Phytochemistry II– Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 505T</td>
<td>Pharmaceutical Jurisprudence – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 506P</td>
<td>Industrial Pharmacy I – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 507P</td>
<td>Pharmacology II – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 508P</td>
<td>Pharmacognosy and Phytochemistry II – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>27</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>
Table VI: Course of study for semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 601T</td>
<td>Medicinal Chemistry III – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 602T</td>
<td>Pharmacology III – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 603T</td>
<td>Herbal Drug Technology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 604T</td>
<td>Biopharmaceutics and Pharmacokinetics – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 605T</td>
<td>Pharmaceutical Biotechnology – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 606T</td>
<td>Quality Assurance – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 607P</td>
<td>Medicinal chemistry III – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 608P</td>
<td>Pharmacology III – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 609P</td>
<td>Herbal Drug Technology – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>6</td>
<td>30</td>
</tr>
</tbody>
</table>

Table VII: Course of study for semester VII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 701T</td>
<td>Instrumental Methods of Analysis – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 702T</td>
<td>Industrial PharmacyII – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 703T</td>
<td>Pharmacy Practice – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 704T</td>
<td>Novel Drug Delivery System – Theory</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 705P</td>
<td>Instrumental Methods of Analysis – Practical</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>BP 706PS</td>
<td>Practice School*</td>
<td>12</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28</td>
<td>5</td>
<td>24</td>
</tr>
</tbody>
</table>

* Non University Examination (NUE)
Table-VIII: Course of study for semester VIII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>No. of hours</th>
<th>Tutorial</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 801T</td>
<td>Biostatistics and Research Methodology</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 802T</td>
<td>Social and Preventive Pharmacy</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BP 803ET</td>
<td>Pharma Marketing Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 804ET</td>
<td>Pharmaceutical Regulatory Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 805ET</td>
<td>Pharmacovigilance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 806ET</td>
<td>Quality Control and Standardization of Herbals</td>
<td>3 + 3 = 6</td>
<td>1 + 1 = 2</td>
<td>4 + 4 = 8</td>
</tr>
<tr>
<td>BP 807ET</td>
<td>Computer Aided Drug Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 808ET</td>
<td>Cell and Molecular Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 809ET</td>
<td>Cosmetic Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 810ET</td>
<td>Pharmacological Screening Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 811ET</td>
<td>Advanced Instrumentation Techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 812ET</td>
<td>Dietary Supplements and Nutraceuticals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 813PW</td>
<td>Project Work</td>
<td>12</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24</td>
<td>4</td>
<td>22</td>
</tr>
</tbody>
</table>

Table-IX: Semester wise credits distribution

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>29</td>
</tr>
<tr>
<td>II</td>
<td>29</td>
</tr>
<tr>
<td>III</td>
<td>24</td>
</tr>
<tr>
<td>IV</td>
<td>28</td>
</tr>
<tr>
<td>V</td>
<td>26</td>
</tr>
<tr>
<td>VI</td>
<td>30</td>
</tr>
<tr>
<td>VII</td>
<td>24</td>
</tr>
<tr>
<td>VIII</td>
<td>22</td>
</tr>
<tr>
<td>Total credit points for the programme</td>
<td>212</td>
</tr>
</tbody>
</table>

10. PROGRAMME COMMITTEE

1. The B. Pharm. programme shall have a Programme Committee constituted by the Head of the institution in consultation with all the Heads of the departments.

2. The composition of the Programme Committee shall be as follows:
 A senior teacher shall be the Chairperson; One Teacher from each department handling B. Pharm. courses; and four student representatives of the programme (one from each academic year), nominated by the Head of the institution.

3. Duties of the Programme Committee:
 i. Periodically reviewing the progress of the classes.
ii. Discussing the problems concerning curriculum, syllabus and the conduct of classes.

iii. Discussing with the course teachers on the nature and scope of assessment for the course and the same shall be announced to the students at the beginning of respective semesters.

iv. Communicating its recommendation to the Head of the institution on academic matters.

v. The Programme Committee shall meet at least thrice in a semester preferably at the end of each Sessional exam (Internal Assessment) and before the end semester exam.

11. EXAMINATIONS/ASSESSMENTS

The scheme for internal assessment and end semester examinations is given in Table - X.

11.1. End Semester Examinations

The End Semester Examinations for each theory and practical course through semesters I to VIII shall be conducted by the University except for the subjects with asterix symbol (*) in table I, II and VII for which examinations shall be conducted by the subject experts at college level and the marks/grades shall be submitted to the University.
Tables-X: Schemes for internal assessments and end semester examinations semester wise

Semester I

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sessional Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Total</td>
</tr>
<tr>
<td>BP 101T</td>
<td>Human Anatomy and Physiology I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 102T</td>
<td>Pharmaceutical Analysis – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 103T</td>
<td>Pharmaceutics – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 104T</td>
<td>Pharmaceutical Inorganic Chemistry – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 105T</td>
<td>Communication skills – Theory*</td>
<td>5</td>
<td>10</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 106RBT/</td>
<td>Remedial Biology/ Remedial Mathematics – Theory*</td>
<td>5</td>
<td>10</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP106RMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 107P</td>
<td>Human Anatomy and Physiology I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 108P</td>
<td>Pharmaceutical Analysis – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 109P</td>
<td>Pharmaceutics – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 110P</td>
<td>Pharmaceutical Inorganic Chemistry – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 111P</td>
<td>Communication skills – Practical*</td>
<td>5</td>
<td>5</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>BP 112RBP</td>
<td>Remedial Biology – Practical*</td>
<td>5</td>
<td>5</td>
<td>2 Hrs</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70/75$^/$80#</td>
<td>115/125$^/$130#</td>
<td>23/24$^/$26#</td>
</tr>
</tbody>
</table>

Applicable ONLY for the students studied Mathematics / Physics / Chemistry at HSC and appearing for Remedial Biology (RB) course.

$ Applicable ONLY for the students studied Physics / Chemistry / Botany at HSC and appearing for Remedial Mathematics (RM) course.

* Non University Examination (NUE)
Semester II

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 201T</td>
<td>Human Anatomy and Physiology II – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 202T</td>
<td>Pharmaceutical Organic Chemistry I – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 203T</td>
<td>Biochemistry – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 204T</td>
<td>Pathophysiology – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 205T</td>
<td>Computer Applications in Pharmacy – Theory*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 206T</td>
<td>Environmental sciences – Theory*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 207P</td>
<td>Human Anatomy and Physiology II – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 208P</td>
<td>Pharmaceutical Organic Chemistry I – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 209P</td>
<td>Biochemistry – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 210P</td>
<td>Computer Applications in Pharmacy – Practical*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>80</td>
<td>125</td>
<td>725</td>
</tr>
</tbody>
</table>

* The subject experts at college level shall conduct examinations
Semester III

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>BP 301T</td>
<td>Pharmaceutical Organic Chemistry II – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 302T</td>
<td>Physical Pharmaceutics I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 303T</td>
<td>Pharmaceutical Microbiology – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 304T</td>
<td>Pharmaceutical Engineering – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 305P</td>
<td>Pharmaceutical Organic Chemistry II – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
</tr>
<tr>
<td>BP 306P</td>
<td>Physical Pharmaceutics I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
</tr>
<tr>
<td>BP 307P</td>
<td>Pharmaceutical Microbiology – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
</tr>
<tr>
<td>BP 308P</td>
<td>Pharmaceutical Engineering – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Course code</td>
<td>Name of the course</td>
<td>Internal Assessment</td>
<td>End Semester Exams</td>
<td>Total Marks</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Total</td>
</tr>
<tr>
<td>BP 401T</td>
<td>Pharmaceutical Organic Chemistry III – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 402T</td>
<td>Medicinal Chemistry I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 403T</td>
<td>Physical Pharmaceutics II – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 404T</td>
<td>Pharmacology I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 405T</td>
<td>Pharmacognosy I – Theory</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 406P</td>
<td>Medicinal Chemistry I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hr</td>
</tr>
<tr>
<td>BP 407P</td>
<td>Physical Pharmaceutics II – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 408P</td>
<td>Pharmacology I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 409P</td>
<td>Pharmacognosy I – Practical</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
<td>115</td>
<td>21 Hrs</td>
</tr>
<tr>
<td>Course code</td>
<td>Name of the course</td>
<td>Internal Assessment</td>
<td>End Semester Exams</td>
<td>Total Marks</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Total</td>
<td>Marks</td>
</tr>
<tr>
<td>BP 501T</td>
<td>Medicinal Chemistry II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP 502T</td>
<td>Industrial Pharmacy I– Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP 503T</td>
<td>Pharmacology II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP 504T</td>
<td>Pharmacognosy II – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP 505T</td>
<td>Pharmaceutical Jurisprudence – Theory</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>BP 506P</td>
<td>Industrial Pharmacy I – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP 507P</td>
<td>Pharmacology II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BP 508P</td>
<td>Pharmacognosy II – Practical</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>65</td>
<td>105</td>
<td>17 Hr</td>
</tr>
</tbody>
</table>
Semester VI

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 601T</td>
<td>Medicinal Chemistry III – Theory</td>
<td>Continuous Mode</td>
<td>Sessional Exams</td>
<td>100</td>
</tr>
<tr>
<td>BP 602T</td>
<td>Pharmacology III – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 603T</td>
<td>Herbal Drug Technology – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 604T</td>
<td>Biopharmaceutics and Pharmacokinetics – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 605T</td>
<td>Pharmaceutical Biotechnology – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 606T</td>
<td>Quality Assurance – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 607P</td>
<td>Medicinal chemistry III – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 608P</td>
<td>Pharmacology III – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 609P</td>
<td>Herbal Drug Technology – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Continuous Mode</th>
<th>Sessional Exams</th>
<th>Total</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marks</td>
<td>Duration</td>
<td>Marks</td>
<td>Duration</td>
<td>Hrs</td>
</tr>
<tr>
<td>BP 601T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 602T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 603T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 604T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 605T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 606T</td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>BP 607P</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP 608P</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>BP 609P</td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td>120</td>
<td>18 Hrs</td>
<td>195</td>
<td>555</td>
</tr>
</tbody>
</table>
Semester VII

<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 701T</td>
<td>Instrumental Methods of Analysis – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 702T</td>
<td>Industrial Pharmacy – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 703T</td>
<td>Pharmacy Practice – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 704T</td>
<td>Novel Drug Delivery System – Theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>1 Hr</td>
</tr>
<tr>
<td>BP 705 P</td>
<td>Instrumental Methods of Analysis – Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>4 Hrs</td>
</tr>
<tr>
<td>BP 706 PS</td>
<td>Practice School*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous</td>
<td>Sessional Exams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode</td>
<td>Marks Duration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
<td>70</td>
<td>8Hrs</td>
</tr>
</tbody>
</table>

* The subject experts at college level shall conduct examinations
<table>
<thead>
<tr>
<th>Course code</th>
<th>Name of the course</th>
<th>Internal Assessment</th>
<th>End Semester Exams</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP 801T</td>
<td>Biostatistics and Research Methodology – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 802T</td>
<td>Social and Preventive Pharmacy – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 803ET</td>
<td>Pharmaceutical Marketing – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 804ET</td>
<td>Pharmaceutical Regulatory Science – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 805ET</td>
<td>Pharmacovigilance – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 806ET</td>
<td>Quality Control and Standardization of Herbals – Theory</td>
<td>10</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>BP 807ET</td>
<td>Computer Aided Drug Design – Theory</td>
<td>10 + 10 = 20</td>
<td>75 + 75 = 150</td>
<td>100 + 200</td>
</tr>
<tr>
<td>BP 808ET</td>
<td>Cell and Molecular Biology – Theory</td>
<td>15 + 15 = 30</td>
<td>75 + 75 = 150</td>
<td>100 + 200</td>
</tr>
<tr>
<td>BP 809ET</td>
<td>Cosmetic Science – Theory</td>
<td>15 + 15 = 30</td>
<td>75 + 75 = 150</td>
<td>100 + 200</td>
</tr>
<tr>
<td>BP 810ET</td>
<td>Experimental Pharmacology – Theory</td>
<td>15 + 15 = 30</td>
<td>75 + 75 = 150</td>
<td>100 + 200</td>
</tr>
<tr>
<td>BP 811ET</td>
<td>Advanced Instrumentation Techniques – Theory</td>
<td>15 + 15 = 30</td>
<td>75 + 75 = 150</td>
<td>100 + 200</td>
</tr>
<tr>
<td>BP 812PW</td>
<td>Project Work</td>
<td>15</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40</td>
<td>100</td>
<td>550</td>
</tr>
</tbody>
</table>
11.2. Internal assessment: Continuous mode
The marks allocated for Continuous mode of Internal Assessment shall be awarded as per the scheme given below.

Table-XI: Scheme for awarding internal assessment: Continuous mode

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance (Refer Table – XII)</td>
<td>2</td>
</tr>
<tr>
<td>Academic activities (Average of any 3 activities e.g. quiz, assignment,</td>
<td>1.5</td>
</tr>
<tr>
<td>open book test, field work, group discussion and seminar)</td>
<td></td>
</tr>
<tr>
<td>Student – Teacher interaction</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Practical

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance (Refer Table – XII)</td>
<td>2</td>
</tr>
<tr>
<td>Based on Practical Records, Regular viva voce, etc.</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
</tr>
</tbody>
</table>

Table- XII: Guidelines for the allotment of marks for attendance

<table>
<thead>
<tr>
<th>Percentage of Attendance</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>90 – 94</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>85 – 89</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>80 – 84</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Less than 80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

11.2.1. Sessional Exams
Two Sessional exams shall be conducted for each theory / practical course as per the schedule fixed by the college(s). The scheme of question paper for theory and practical Sessional examinations is given below. The average marks of two Sessional exams shall be computed for internal assessment as per the requirements given in tables – X. Sessional exam shall be conducted for 30 marks for theory and shall be computed for 15 marks. Similarly Sessional exam for practical shall be conducted for 40 marks and shall be computed for 10 marks.

Question paper pattern for theory Sessional examinations

For subjects having University examination

I. Multiple Choice Questions (MCQs)

\[\text{OR} \]

Objective Type Questions (5 x 2)

(Answer all the questions)

I. Long Answers (Answer 1 out of 2)

II. Short Answers (Answer 2 out of 3)

\[\text{Total} = 30 \text{ marks} \]
For subjects having Non University Examination

I. Long Answers (Answer 1 out of 2) = 1 x 10 = 10
II. Short Answers (Answer 4 out of 6) = 4 x 5 = 20

Total = 30 marks

Question paper pattern for practical sessional examinations

I. Synopsis = 10
II. Experiments = 25
III. Viva voce = 05

Total = 40 marks

12. PROMOTION AND AWARD OF GRADES
A student shall be declared PASS and eligible for getting grade in a course of B. Pharm. programme if he/she secures at least 50% marks in that particular course including internal assessment. For example, to be declared as PASS and to get grade, the student has to secure a minimum of 50 marks for the total of 100 including continuous mode of assessment and end semester theory examination and has to secure a minimum of 25 marks for the total 50 including internal assessment and end semester practical examination.

13. CARRY FORWARD OF MARKS
In case a student fails to secure the minimum 50% in any Theory or Practical course as specified in 12, then he/she shall reappear for the end semester examination of that course. However his/her marks of the Internal Assessment shall be carried over and he/she shall be entitled for grade obtained by him/her on passing.

14. IMPROVEMENT OF INTERNAL ASSESSMENT
A student shall have the opportunity to improve his/her performance only once in the Sessional exam component of the internal assessment. The re-conduct of the Sessional exam shall be completed before the commencement of next end semester theory examinations.

15. RETOTALLING, REVALUATION AND RE-EXAMINATION OF END SEMESTER EXAMINATIONS

15.1 Retotalling of the theory answer scripts (Theory) of the end-semester examination is permitted on a request made by the student by paying the prescribed fee within ten days of the announcement of the result.

15.2 Revaluation of the theory answer scripts (Theory) of the end-semester examination is also permitted on a request made by the student by paying the prescribed fee within fifteen days of the announcement of the result.
15.3 A student who has secured ‘F’ Grade in Project work shall have to improve his/her report and reappear for Viva – voce at the time of Special Examination to be conducted in the summer vacation.

15.4 Reexamination of end semester examination shall be conducted as per the schedule given in table XIII. The exact dates of examinations shall be notified from time to time.

Table-XIII: Tentative schedule of end semester examinations

<table>
<thead>
<tr>
<th>Semester</th>
<th>For Regular Candidates</th>
<th>For Failed Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, III, V and VII</td>
<td>November / December</td>
<td>April / May</td>
</tr>
<tr>
<td>II, IV, VI and VIII</td>
<td>April / May</td>
<td>November / December</td>
</tr>
</tbody>
</table>

16. SPECIAL EXAMINATION

A student who has completed his/her period of study and still has ‘F’ grade in a ‘Maximum of Five’ of Theory/ Practical courses is eligible to appear for Special Examination normally held during summer vacation.

Question paper pattern for end semester theory examinations

For 75 marks paper

I. Multiple Choice Questions (MCQs) = 20 x 1 = 20
 OR
 Objective Type Questions (10 x 2) = 10 x 2 = 20
 (Answer all the questions)

II. Long Answers (Answer 2 out of 3) = 2 x 10 = 20

III. Short Answers (Answer 7 out of 9) = 7 x 5 = 35

Total = 75 marks

For 50 marks paper

I. Long Answers (Answer 2 out of 3) = 2 x 10 = 20

II. Short Answers (Answer 6 out of 8) = 6 x 5 = 30

Total = 50 marks

For 35 marks paper

I. Long Answers (Answer 1 out of 2) = 1 x 10 = 10

II. Short Answers (Answer 5 out of 7) = 5 x 5 = 25

Total = 35 marks

Question paper pattern for end semester practical examinations

I. Synopsis = 5

II. Experiments = 25

III. Viva voce = 5

Total = 35 marks

17. ACADEMIC PROGRESSION:

No student shall be admitted to any examination unless he/she fulfills the norms given in 6. Academic progression rules are applicable as follows:

- A student shall be eligible to carry forward all the courses of I, II and III semesters till the IV semester examinations. However, he/she shall not be eligible to attend the courses of V semester until all the courses of I and II semesters are successfully completed.
- A student shall be eligible to carry forward all the courses of III, IV and V semesters till the VI semester examinations. However, he/she shall not be eligible to attend the courses of VII semester until all the courses of I, II, III and IV semesters are successfully completed.
- A student shall be eligible to carry forward all the courses of V, VI and VII semesters till the VIII semester examinations. However, he/she shall not be eligible to get the course completion certificate until all the courses of I, II, III, IV, V and VI semesters are successfully completed.
- A student shall be eligible to get his/her CGPA upon successful completion of the courses of I to VIII semesters within the stipulated time period as per the norms specified in 27.
- Any student who has given more than 4 chances for successful completion of I / III semester courses and more than 3 chances for successful completion of II / IV semester courses shall be permitted to attend V / VII semester classes ONLY during the subsequent academic year as the case may be. In simpler terms there shall NOT be any ODD BATCH for any semester.

Note: Grade AB should be considered as failed and treated as one head for deciding academic progression. Such rules are also applicable for those students who fail to register for examination(s) of any course in any semester.

18. GRADING OF PERFORMANCES

18.1. Letter grades and grade points allocations:

Based on the performances, each student shall be awarded a final letter grade at the end of the semester for each course. The letter grades and their corresponding grade points are given in Table – XIV.

<table>
<thead>
<tr>
<th>Percentage of Marks Obtained</th>
<th>Letter Grade</th>
<th>Grade Point</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.00 – 100</td>
<td>O</td>
<td>10</td>
<td>Outstanding</td>
</tr>
<tr>
<td>80.00 – 89.99</td>
<td>A</td>
<td>9</td>
<td>Excellent</td>
</tr>
<tr>
<td>70.00 – 79.99</td>
<td>B</td>
<td>8</td>
<td>Good</td>
</tr>
<tr>
<td>60.00 – 69.99</td>
<td>C</td>
<td>7</td>
<td>Fair</td>
</tr>
<tr>
<td>50.00 – 59.99</td>
<td>D</td>
<td>6</td>
<td>Average</td>
</tr>
<tr>
<td>Less than 50</td>
<td>F</td>
<td>0</td>
<td>Fail</td>
</tr>
<tr>
<td>Absent</td>
<td>AB</td>
<td>0</td>
<td>Fail</td>
</tr>
</tbody>
</table>
A learner who remains absent for any end semester examination shall be assigned a letter grade of AB and a corresponding grade point of zero. He/she should reappear for the said evaluation/examination in due course.

19. THE SEMESTER GRADE POINT AVERAGE (SGPA)
The performance of a student in a semester is indicated by a number called ‘Semester Grade Point Average’ (SGPA). The SGPA is the weighted average of the grade points obtained in all the courses by the student during the semester. For example, if a student takes five courses (Theory/Practical) in a semester with credits C1, C2, C3, C4 and C5 and the student’s grade points in these courses are G1, G2, G3, G4 and G5, respectively, and then students’ SGPA is equal to:

\[SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4G_4 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5} \]

The SGPA is calculated to two decimal points. It should be noted that, the SGPA for any semester shall take into consideration the F and AB grade awarded in that semester. For example if a learner has a F or ABS grade in course 4, the SGPA shall then be computed as:

\[SGPA = \frac{C_1G_1 + C_2G_2 + C_3G_3 + C_4 \times 0 + C_5G_5}{C_1 + C_2 + C_3 + C_4 + C_5} \]

20. CUMULATIVE GRADE POINT AVERAGE (CGPA)
The CGPA is calculated with the SGPA of all the VIII semesters to two decimal points and is indicated in final grade report card/final transcript showing the grades of all VIII semesters and their courses. The CGPA shall reflect the failed status in case of F grade(s), till the course(s) is/are passed. When the course(s) is/are passed by obtaining a pass grade on subsequent examination(s) the CGPA shall only reflect the new grade and not the fail grades earned earlier. The CGPA is calculated as:

\[CGPA = \frac{C_1S_1 + C_2S_2 + C_3S_3 + C_4S_4 + C_5S_5 + C_6S_6 + C_7S_7 + C_8S_8}{C_1 + C_2 + C_3 + C_4 + C_5 + C_6 + C_7 + C_8} \]

where C1, C2, C3, ..., is the total number of credits for semester I, II, III, ..., and S1, S2, S3, ..., is the SGPA of semester I, II, III,

21. DECLARATION OF CLASS
The class shall be awarded on the basis of CGPA as follows:
- First Class with Distinction = CGPA of 7.50 and above
- First Class = CGPA of 6.00 to 7.49
- Second Class = CGPA of 5.00 to 5.99

22. PROJECT WORK
All the students shall undertake a project under the supervision of a teacher and submit a report. The area of the project shall directly relate any one of the elective subject opted by
the student in semester VIII. The project shall be carried out in group not exceeding 5 in number. The project report shall be submitted in triplicate (typed & bound copy not less than 25 pages).

The internal and external examiner appointed by the University shall evaluate the project at the time of the Practical examinations of other semester(s). Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of five students). The projects shall be evaluated as per the criteria given below.

Evaluation of Dissertation Book:
- Objective(s) of the work done 15 Marks
- Methodology adopted 20 Marks
- Results and Discussions 20 Marks
- Conclusions and Outcomes 20 Marks

Total 75 Marks

Evaluation of Presentation:
- Presentation of work 25 Marks
- Communication skills 20 Marks
- Question and answer skills 30 Marks

Total 75 Marks

Explanation: The 75 marks assigned to the dissertation book shall be same for all the students in a group. However, the 75 marks assigned for presentation shall be awarded based on the performance of individual students in the given criteria.

23. **INDUSTRIAL TRAINING (Desirable)**
Every candidate shall be required to work for at least 150 hours spread over four weeks in a pharmaceutical industry/hospital. It includes production unit, quality control department, quality assurance department, analytical laboratory, chemical manufacturing unit, pharmaceutical R&D, hospital (Clinical pharmacy), clinical research organization, community pharmacy, etc. After the Semester – VI and before the commencement of Semester – VII, and shall submit satisfactory report of such work and certificate duly signed by the authority of training organization to the head of the institute.

24. **PRACTICE SCHOOL**
In the VII semester, every candidate shall undergo practice school for a period of 150 hours evenly distributed throughout the semester. The student shall opt any one of the domains for practice school declared by the programme committee from time to time.

At the end of the practice school, every student shall submit a printed report (in triplicate) on the practice school he/she attended (not more than 25 pages). Along with the exams of semester VII, the report submitted by the student, knowledge and skills acquired by the student through practice school shall be evaluated by the subject experts at college level and grade point shall be awarded.
25. AWARD OF RANKS
Ranks and Medals shall be awarded on the basis of final CGPA. However, candidates who fail in one or more courses during the B. Pharm programme shall not be eligible for award of ranks. Moreover, the candidates should have completed the B. Pharm. programme in minimum prescribed number of years, (four years) for the award of Ranks.

26. AWARD OF DEGREE
Candidates who fulfill the requirements mentioned above shall be eligible for award of degree during the ensuing convocation.

27. DURATION FOR COMPLETION OF THE PROGRAMME OF STUDY
The duration for the completion of the programme shall be fixed as double the actual duration of the programme and the students have to pass within the said period, otherwise they have to get fresh Registration.

28. RE-ADMISSION AFTER BREAK OF STUDY
Candidate who seeks re-admission to the programme after break of study has to get the approval from the University by paying a condonation fee. No condonation is allowed for the candidate who has more than 2 years of break up period and he/she has to rejoin the programme by paying the required fees.
SEMESTER – I

BP 101T. HUMAN ANATOMY AND PHYSIOLOGY – I (Theory)

Hours per week: 3L+1T
Credit: 4

End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to
1. Explain the gross morphology, structure and functions of various organs of the human body.
2. Describe the various homeostatic mechanisms and their imbalances.
3. Identify the various tissues and organs of different systems of human body.
4. Perform the various experiments related to special senses and nervous system.
5. Appreciate coordinated working pattern of different organs of each system

Course Content:

UNIT – I 10 Hrs
Introduction to human body
Definition and scope of anatomy and physiology, levels of structural organization and body systems, basic life processes, homeostasis, basic anatomical terminology.

Cellular level of organization
Structure and functions of cell, transport across cell membrane, cell division, cell junctions. General principles of cell communication, intracellular signaling pathway activation by extracellular signal molecule. Forms of intracellular signaling: a) Contact-dependent b) Paracrine c) Synaptic d) Endocrine

Tissue level of organization
Classification of tissues, structure, location and functions of epithelial, muscular and nervous and connective tissues.

UNIT – II 10 Hrs
Integumentary system
Structure and functions of skin

Skeletal system
Divisions of skeletal system, types of bone, salient features and functions of bones of axial and appendicular skeletal system
Organization of skeletal muscle, physiology of muscle contraction, neuromuscular junction

Joints
Structural and functional classification, types of joints movements and its articulation

UNIT – III 10 Hrs
Body fluids and blood
Body fluids, composition and functions of blood, haemopoiesis, formation of haemoglobin, anaemia, mechanisms of coagulation, blood grouping, Rh factors, transfusion, its significance and disorders of blood, Reticulo endothelial system.
Lymphatic system
Lymphatic organs and tissues, lymphatic vessels, lymph circulation and functions of lymphatic system

UNIT – IV
Peripheral nervous system:
Classification of peripheral nervous system: Structure and functions of sympathetic and parasympathetic nervous system.
Origin and functions of spinal and cranial nerves.
Special senses
Structure and functions of eye, ear, nose and tongue and their disorders.

UNIT – V
Cardiovascular system
Heart – anatomy of heart, blood circulation, blood vessels, structure and functions of artery, vein and capillaries, elements of conduction system of heart and heart beat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, electrocardiogram and disorders of heart.

BP 107P. HUMAN ANATOMY AND PHYSIOLOGY – I (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. Study of compound microscope.
2. Microscopic study of epithelial and connective tissue
3. Microscopic study of muscular and nervous tissue
4. Identification of axial bones
5. Identification of appendicular bones
6. Introduction to hemocytometry.
7. Enumeration of white blood cell (WBC) count
8. Enumeration of total red blood corpuscles (RBC) count
9. Determination of bleeding time
10. Determination of clotting time
11. Estimation of hemoglobin content
12. Determination of blood group.
13. Determination of erythrocyte sedimentation rate (ESR).
15. Recording of blood pressure.

Recommended Books (Latest Editions)
Reference Books (Latest Editions)
1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterjee, Academic Publishers Kolkata
5. Textbook of Human Histology by Inderbir Singh, Jaypee brother’s medical publishers, New Delhi.
6. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother’s medical publishers, New Delhi.
7. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother’s medical publishers, New Delhi.

BP 102T. PHARMACEUTICAL ANALYSIS (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Scope: This course deals with the fundamentals of analytical chemistry and principles of electrochemical analysis of drugs

Objectives: Upon completion of the course student shall be able to
- understand the principles of volumetric and electro chemical analysis
- carryout various volumetric and electrochemical titrations
- develop analytical skills

Course Content:

UNIT – I
(a) Pharmaceutical analysis- Definition and scope
i) Different techniques of analysis
ii) Methods of expressing concentration
iii) Primary and secondary standards.
iv) Preparation and standardization of various molar and normal solutions- Oxalic acid, sodium hydroxide, hydrochloric acid, sodium thiosulphate, sulphuric acid, potassium permanganate and ceric ammonium sulphate
(b) Errors: Sources of errors, types of errors, methods of minimizing errors, accuracy, precision and significant figures

UNIT – II
Acid base titration: Law of mass action, common ion effect, solubility product. Theories of acid base indicators, classification of acid base titrations and theory involved in titrations of strong, weak, and very weak acids and bases, neutralization curves.
Non aqueous titration: Solvents, acidimetry and alkalimetry titration and estimation of Sodium benzoate and Ephedrine HCl.
UNIT – III 10 Hrs
Precipitation titrations: Mohr’s method, Volhard’s, Modified Volhard’s, Fajans method, estimation of sodium chloride.
Complexometric titration: Classification, metal ion indicators, masking and demasking reagents, estimation of Magnesium sulphate, and calcium gluconate.

UNIT – IV 08 Hrs
Redox titrations
(a) Concepts of oxidation and reduction
(b) Types of redox titrations (Principles and applications)
Permanganometry, Cerimetry, Iodimetry, Iodometry, Bromatometry, Dichrometry, Titration with potassium iodate

UNIT – V 07 Hrs
Electrochemical methods of analysis
Conductometry - Introduction, Conductivity cell, Conductometric titrations, applications.
Potentiometry - Electrochemical cell, construction and working of reference (Standard hydrogen, silver chloride electrode and calomel electrode) and indicator electrodes (metal electrodes and glass electrode), methods to determine end point of potentiometric titration and applications.
Polarography - Principle, Ilkovic equation, construction and working of dropping mercury electrode and rotating platinum electrode, applications

BP 108P. PHARMACEUTICAL ANALYSIS (Practical)

Hours per week: 4
End Examination: 35 Marks
Credit: 2
Midsem: 15 Marks

I Preparation and standardization of
(1) Sodium hydroxide
(2) Sulphuric acid
(3) Sodium thiosulfate
(4) Potassium permanganate
(5) Ceric ammonium sulphate

II Assay of the following compounds along with Standardization of Titrant
(1) Ammonium chloride by acid base titration
(2) Ferrous sulphate by Cerimetry
(3) Copper sulphate by Iodometry
(4) Calcium gluconate by complexometry
(5) Hydrogen peroxide by Permanganometry
(6) Sodium benzoate by non-aqueous titration
(7) Sodium Chloride by precipitation titration

III Determination of Normality by electro-analytical methods
(1) Conductometric titration of strong acid against strong base
(2) Conductometric titration of strong acid and weak acid against strong base
(3) Potentiometric titration of strong acid against strong base
Recommended Books: (Latest Editions)
2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
4. Bentley and Driver's Textbook of Pharmaceutical Chemistry
5. John H. Kennedy, Analytical chemistry principles
6. Indian Pharmacopoeia.

BP 103T. PHARMACEUTICS (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This course is designed to impart a fundamental knowledge on the preparatory pharmacy with arts and science of preparing the different conventional dosage forms.

Objectives: Upon completion of this course the student should be able to:
- Know the history of profession of pharmacy
- Understand the basics of different dosage forms, pharmaceutical incompatibilities and pharmaceutical calculations
- Understand the professional way of handling the prescription
- Preparation of various conventional dosage forms

Course Content:

UNIT – I 10 Hrs
Historical background and development of profession of pharmacy: History of profession of Pharmacy in India in relation to pharmacy education, industry and organization, Pharmacy as a career, Pharmacopoeias: Introduction to IP, BP, USP and Extra Pharmacopoeia.
Dosage forms: Introduction to dosage forms, classification and definitions

UNIT – II 10 Hrs
Liquid dosage forms: Advantages and disadvantages of liquid dosage forms. Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques.
Biphasic liquids: Suspensions: Definition, advantages and disadvantages, classifications, Preparation of suspensions; Flocculated and Deflocculated suspension & stability problems and methods to overcome.
Emulsions: Definition, classification, emulsifying agent, test for the identification of type of Emulsion, Methods of preparation & stability problems and methods to overcome.
UNIT – III 8 Hrs

Prescription: Definition, Parts of prescription, handling of Prescription and Errors in prescription.

Pharmaceutical incompatibilities: Definition, classification, physical, chemical and therapeutic incompatibilities with examples.

UNIT – IV 10 Hrs

Semisolid dosage forms: Definitions, classification, mechanisms and factors influencing dermal penetration of drugs. Preparation of ointments, pastes, creams and gels. Excipients used in semi solid dosage forms. Evaluation of semi solid dosages forms.

Suppositories: Definition, types, advantages and disadvantages, types of bases, methods of preparations. Displacement value & its calculations, evaluation of suppositories.

UNIT – V 7 Hrs

Posology: Definition, Factors affecting posology. Pediatric dose calculations based on age, body weight and body surface area.

Pharmaceutical calculations: Weights and measures – Imperial & Metric system, Calculations involving percentage solutions, alligation, proof spirit and isotonic solutions based on freezing point and molecular weight.

BP 109P. PHARMACEUTICS (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Syrups
 a) Syrup IP’66
 b) Compound syrup of Ferrous Phosphate BPC’68
2. Elixirs
 a) Piperazine citrate elixir
 b) Paracetamol pediatric elixir
3. Linctus - Terpin Hydrate Linctus IP’66
4. Solutions
 b) Iodine Throat Paint (Mandles Paint)
 a) Strong solution of ammonium acetate
 b) Cresol with soap solution
 c) Lugol’s solution
5. Suspensions
 a) Calamine lotion
 b) Magnesium Hydroxide mixture
 c) Aluminium Hydroxide gel
6. Emulsions
 a) Turpentine Liniment
 b) Liquid paraffin emulsion
7. Powders and Granules
 a) ORS powder (WHO)
 b) Effervescent granules
 c) Dusting powder
 d) Divided powders
8. Suppositories
 a) Glycero gelatin suppository
b) Coca butter suppository

c) Zinc Oxide suppository

9. Semisolids
a) Sulphur ointment
b) Non staining-iodine ointment with methyl salicylate
c) Carbopol gel

10. Gargles and Mouthwashes
a) Iodine gargle
b) Chlorhexidine mouthwash

Recommended Books: (Latest Editions)
2. Carter S.J., Cooper and Gunn’s-Dispensing for Pharmaceutical Students, CBS publishers, New Delhi.
4. Indian pharmacopoeia.
5. British pharmacopoeia.
9. E.A. Rawlins, Bentley’s Text Book of Pharmaceutics, English Language Book Society, Elsevier Health Sciences, USA.

BP 104T. PHARMACEUTICAL INORGANIC CHEMISTRY (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: This subject deals with the monographs of inorganic drugs and pharmaceuticals.

Objectives: Upon completion of course student shall be able to
- know the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals
- understand the medicinal and pharmaceutical importance of inorganic compounds

Course Content:

UNIT – I

Impurities in pharmaceutical substances: History of Pharmacopoeia, Sources and types of impurities, principle involved in the limit test for Chloride, Sulphate, Iron, Arsenic, Lead and Heavy metals, modified limit test for Chloride and Sulphate
General methods of preparation, assay for the compounds superscripted with asterisk (*), properties and medicinal uses of inorganic compounds belonging to the following classes

UNIT – II

Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.

Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.

Dental products: Dentifrices, role of fluoride in the treatment of dental caries, esensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement.

UNIT – III

Gastrointestinal agents

Acidifiers: Ammonium chloride* and Dil. HCl

Antacid: Ideal properties of antacids, combinations of antacids, Sodium Bicarbonate*, Aluminum hydroxide gel, Magnesium hydroxide mixture

Cathartics: Magnesium sulphate, Sodium orthophosphate, Kaolin and Bentonite

Antimicrobials: Mechanism, classification, Potassium permanganate, Boric acid, Hydrogen peroxide*, Chlorinated lime*, Iodine and its preparations

UNIT – IV

Miscellaneous compounds

Expectorants: Potassium iodide, Ammonium chloride*.

Emetics: Copper sulphate*, Sodium potassium tartarate

Haematinics: Ferrous sulphate*, Ferrous gluconate

Poison and Antidote: Sodium thiosulphate*, Activated charcoal, Sodium nitrite333

Astringents: Zinc Sulphate, Potash Alum

UNIT – V

BP 110P. PHARMACEUTICAL INORGANIC CHEMISTRY (Practical)

Hours per week: 4

Credit: 2

End Examination: 35 Marks

Midsem: 15 Marks

I Limit tests for following ions

Limit test for Chlorides and Sulphates

Modified limit test for Chlorides and Sulphates

Limit test for Iron

Limit test for Heavy metals

Limit test for Lead

Limit test for Arsenic

II Identification test

Magnesium hydroxide

Ferrous sulphate
Sodium bicarbonate
Calcium gluconate
Copper sulphate

III Test for purity
Swelling power of Bentonite
Neutralizing capacity of aluminum hydroxide gel
Determination of potassium iodate and iodine in potassium Iodide

IV Preparation of inorganic pharmaceuticals
Boric acid
Potash alum
Ferrous sulphate

Recommended Books (Latest Editions)
2. A.I. Vogel, Text Book of Quantitative Inorganic analysis
4. M.L Schroff, Inorganic Pharmaceutical Chemistry
5. Bentley and Driver's Textbook of Pharmaceutical Chemistry
7. Indian Pharmacopoeia

BP 105T. COMMUNICATION SKILLS (Theory)

Hours per week: 2L
End Examination: 35 Marks
Midsem: 15 Marks

Scope: This course will prepare the young pharmacy student to interact effectively with doctors, nurses, dentists, physiotherapists and other health workers. At the end of this course the student will get the soft skills set to work cohesively with the team as a team player and will add value to the pharmaceutical business.

Objectives:
Upon completion of the course the student shall be able to

- Understand the behavioural needs for a Pharmacist to function effectively in the areas of pharmaceutical operation
- Communicate effectively (Verbal and Non Verbal)
- Effectively manage the team as a team player
- Develop interview skills
- Develop Leadership qualities and essentials

Course content:

UNIT – I
Communication Skills: Introduction, definition, the importance of communication, The communication process – Source, Message, Encoding, Channel, Decoding, Receiver, Feedback, Context
Barriers to communication: Physiological barriers, physical barriers, cultural barriers, language barriers, gender barriers, interpersonal barriers, psychological barriers, emotional barriers
Perspectives in Communication: Introduction, visual perception, language, other factors affecting our perspective - past experiences, prejudices, feelings, environment

UNIT – II
Elements of Communication: Introduction, face to face communication - tone of voice, body language (Non-verbal communication), verbal communication, physical communication
Communication Styles: Introduction, the communication styles matrix with example for each - direct communication style, spirited communication style, systematic communication style, considerate communication style

UNIT – III
Basic Listening Skills: Introduction, self-awareness, active listening, becoming an active listener, listening in difficult situations
Effective Written Communication: Introduction, when and when not to use written communication - complexity of the topic, amount of discussion required, shades of meaning, formal communication
Writing effectively: Subject lines, put the main point first, know your audience, organization of the message

UNIT – IV
Interview Skills: Purpose of an interview, Do’s and Don’t’s of an interview
Giving Presentations: Dealing with Fears, Planning your Presentation, Structuring Your Presentation, Delivering Your Presentation, Techniques of Delivery

UNIT – V
Group Discussion: Introduction, communication skills in group discussion, Do’s and Don’t’s of group discussion

BP 111P. COMMUNICATION SKILLS (Practical)

Hours per week: 2
Credit: 1
End Examination: 15 Marks
Midsem: 10 Marks

The following learning modules are to be conducted using words worth® English language lab software

Basic communication covering the following topics
Meeting People
Asking Questions
Making Friends
What did you do?
Do’s and Don’t’s

Pronunciations covering the following topics
Pronunciation (Consonant Sounds)
Pronunciation and Nouns
Pronunciation (Vowel Sounds)

Advanced Learning
Listening Comprehension / Direct and Indirect Speech
Figures of Speech
Effective Communication
Recommended Books: (Latest Edition)
6. Developing your influencing skills, Deborah Dalley, Lois Burton, Margaret, Green hall, 1st edition Universe of Learning LTD, 2010

BP 106RB. REMEDIAL BIOLOGY (Theory)

Hours per week: 2L
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

Scope: To learn and understand the components of living world, structure and functional system of plant and animal kingdom.

Objectives: Upon completion of the course, the student shall be able to

- know the classification and salient features of five kingdoms of life
- understand the basic components of anatomy & physiology of plant
- know understand the basic components of anatomy & physiology animal with special reference to human

Course content:

UNIT – I
Living world:
Definition and characters of living organisms
Diversity in the living world
Binomial nomenclature
Morphology of Flowering plants
Morphology of different parts of flowering plants – Root, stem, inflorescence, flower, leaf, fruit, seed.
General anatomy of root, stem, leaf of monocotyledons & dicotyledons.
UNIT – II

Body fluids and circulation
Composition of blood, blood groups, coagulation of blood
Composition and functions of lymph
Human circulatory system
Structure of human heart and blood vessels
Cardiac cycle, cardiac output and ECG

Digestion and Absorption
Human alimentary canal and digestive glands
Role of digestive enzymes
Digestion, absorption and assimilation of digested food

Breathing and respiration
Human respiratory system
Mechanism of breathing and its regulation
Exchange of gases, transport of gases and regulation of respiration
Respiratory volumes

UNIT – III

Excretory products and their elimination
Modes of excretion
Human excretory system- structure and function
Urine formation
Rennin angiotensin system

Neural control and coordination
Definition and classification of nervous system
Structure of a neuron
Generation and conduction of nerve impulse
Structure of brain and spinal cord
Functions of cerebrum, cerebellum, hypothalamus and medulla oblongata

Chemical coordination and regulation
Endocrine glands and their secretions
Functions of hormones secreted by endocrine glands

Human reproduction
Parts of female reproductive system
Parts of male reproductive system
Spermatogenesis and Oogenesis
Menstrual cycle

UNIT – IV

Plants and mineral nutrition:
Essential mineral, macro and micronutrients
Nitrogen metabolism, Nitrogen cycle, biological nitrogen fixation
Photosynthesis
Autotrophic nutrition, photosynthesis, Photosynthetic pigments, Factors affecting photosynthesis.

UNIT – V

Plant respiration: Respiration, glycolysis, fermentation (anaerobic).

Plant growth and development
Phases and rate of plant growth, Condition of growth, Introduction to plant growth regulators
Cell - The unit of life
Structure and functions of cell and cell organelles. Cell division

Tissues
Definition, types of tissues, location and functions.

Text Books
1. Text book of Biology by S. B. Gokhale
2. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.

Reference Books
1. A Text book of Biology by B.V. Sreenivasa Naidu
2. A Text book of Biology by Naidu and Murthy
3. Botany for Degree students By A.C.Dutta.
5. A manual for pharmaceutical biology practical by S.B. Gokhale and C. K. Kokate

BP 112RBP. REMEDIAL BIOLOGY (Practical)
Hours per week: 2
Credit: 1
End Examination: 15 Marks
Midsem: 10 Marks

1. Introduction to experiments in biology
a) Study of Microscope
b) Section cutting techniques
c) Mounting and staining
d) Permanent slide preparation
2. Study of cell and its inclusions
3. Study of Stem, Root, Leaf, seed, fruit, flower and their modifications
4. Detailed study of frog by using computer models
5. Microscopic study and identification of tissues pertinent to Stem, Root
Leaf, seed, fruit and flower
6. Identification of bones
7. Determination of blood group
8. Determination of blood pressure
9. Determination of tidal volume

Reference Books

BP 106RMT. REMEDIAL MATHEMATICS (Theory)
Hours per week: 2L
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks
Scope: This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.
Objectives: Upon completion of the course the student shall be able to:

- Know the theory and their application in Pharmacy
- Solve the different types of problems by applying theory
- Appreciate the important application of mathematics in Pharmacy

Course Content:

UNIT – I

Partial fraction:
Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction, Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics

Logarithms:
Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

Function:
Real Valued function, Classification of real valued functions,

Limits and continuity:
Introduction, Limit of a function, Definition of limit of a function (ε - δ definition),
\[\lim_{x \to a} \left(\frac{x^n - a^n}{x-a} \right) = n a^{n-1} \], \[\lim_{0 \to \frac{\pi}{6}} (\sin \theta) = 1 \]

UNIT – II

Matrices and Determinant:
Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer’s rule, Characteristic equation and roots of a square matrix, Cayley–Hamilton theorem, Application of Matrices in solving Pharmacokinetic equations

UNIT – III

Calculus Differentiation: Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – without Proof, Derivative of \(x^n \) w.r.t. \(x \), where \(n \) is any rational number, Derivative of \(e^x \), Derivative of \(\log_e x \), Derivative of \(a^x \), Derivative of trigonometric functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application

UNIT – IV

Analytical Geometry

Introduction: Signs of the Coordinates, Distance formula,

Straight Line: Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line

Integration: Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application.
UNIT – V 06 Hrs

Differential Equations: Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations

Recommended Books (Latest Edition)
1. Differential Calculus by Shanthinarayan
2. Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda D.H.
3. Integral Calculus by Shanthinarayan
4. Higher Engineering Mathematics by Dr. B.S.Grewal
SEMESTER – II

BP 201T. HUMAN ANATOMY AND PHYSIOLOGY – II (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart fundamental knowledge on the structure and functions of the various systems of the human body. It also helps in understanding both homeostatic mechanisms. The subject provides the basic knowledge required to understand the various disciplines of pharmacy.

Objectives: Upon completion of this course the student should be able to:
• Explain the gross morphology, structure and functions of various organs of the human body.
• Describe the various homeostatic mechanisms and their imbalances.
• Identify the various tissues and organs of different systems of human body.
• Appreciate coordinated working pattern of different organs of each system
• Appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body.

Course Content:

UNIT – I 10 Hrs
Nervous system
Organization of nervous system, neuron, neuroglia, classification and properties of nerve fibre, electrophysiology, action potential, nerve impulse, receptors, synapse, neurotransmitters.
Central nervous system: Meninges, ventricles of brain and cerebrospinal fluid. structure and functions of brain (cerebrum, brain stem, cerebellum), spinal cord (gross structure, functions of afferent and efferent nerve tracts, reflex activity)

UNIT – II 06 Hrs
Digestive system
Anatomy of GI Tract with special reference to anatomy and functions of stomach, (Acid production in the stomach, regulation of acid production through parasympathetic nervous system, pepsin role in protein digestion) small intestine and large intestine, anatomy and functions of salivary glands, pancreas and liver, movements of GIT, digestion and absorption of nutrients and disorders of GIT.
Energetics
Formation and role of ATP, Creatinine Phosphate and BMR.

UNIT – III 10 Hrs
Respiratory system
Anatomy of respiratory system with special reference to anatomy of lungs, mechanism of respiration, regulation of respiration, lung volumes and capacities, transport of respiratory gases, artificial respiration and resuscitation methods.
Urinary system

UNIT – IV
Endocrine system
Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal gland, pancreas, pineal gland, thymus and their disorders.

UNIT – V
Reproductive system
Anatomy of male and female reproductive system, Functions of male and female reproductive system, sex hormones, physiology of menstruation, fertilization, spermatogenesis, oogenesis, pregnancy and parturition

Introduction to genetics
Chromosomes, genes and DNA, protein synthesis, genetic pattern of inheritance

BP 207P. HUMAN ANATOMY AND PHYSIOLOGY (Practical)
Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

Practical physiology is complimentary to the theoretical discussions in physiology. Practicals allow the verification of physiological processes discussed in theory classes through experiments on living tissue, intact animals or normal human beings. This is helpful for developing an insight on the subject.

1. To study the integumentary and special senses using specimen, models, etc.,
2. To study the nervous system using specimen, models, etc.,
3. To study the endocrine system using specimen, models, etc
4. To demonstrate the general neurological examination
5. To demonstrate the function of olfactory nerve
6. To examine the different types of taste.
7. To demonstrate the visual acuity
8. To demonstrate the reflex activity
9. Recording of body temperature
10. To demonstrate positive and negative feedback mechanism.
11. Determination of tidal volume and vital capacity.
12. Study of digestive, respiratory, cardiovascular systems, urinary and reproductive systems with the help of models, charts and specimens.
13. Recording of basal mass index.
15. Demonstration of total blood count by cell analyser
16. Permanent slides of vital organs and gonads.

Recommended Books (Latest Editions)
3. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI USA
7. Textbook of Practical Physiology by C.L. Ghai, Jaypee brother’s medical publishers, New Delhi.
8. Practical workbook of Human Physiology by K. Srinageswari and Rajeev Sharma, Jaypee brother’s medical publishers, New Delhi.

Reference Books:
1. Physiological basis of Medical Practice-Best and Tailor. Williams & Wilkins Co, Riverview, MI, USA.
3. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterjee, Academic Publishers Kolkata.

BP 202T. PHARMACEUTICAL ORGANIC CHEMISTRY – I (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject deals with classification and nomenclature of simple organic compounds, structural isomerism, intermediates forming in reactions, important physical properties, reactions and methods of preparation of these compounds. The syllabus also emphasizes on mechanisms and orientation of reactions.

Objectives: Upon completion of the course the student shall be able to
- write the structure, name and the type of isomerism of the organic compound
- write the reaction, name the reaction and orientation of reactions
- account for reactivity/stability of compounds,
- identify/confirm the identification of organic compound

Course Content:
General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained and to emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT – I
Classification, nomenclature and isomerism
Classification of Organic Compounds
Common and IUPAC systems of nomenclature of organic compounds
(up to 10 Carbons open chain and carbocyclic compounds)
Structural isomerisms in organic compounds

40
UNIT – II
10 Hrs
Alkanes*, Alkenes* and Conjugated dienes*
SP^3 hybridization in alkanes, Halogenation of alkanes, uses of paraffins.
Stabilities of alkenes, SP^2 hybridization in alkenes
E1 and E2 reactions – kinetics, order of reactivity of alkyl halides, rearrangement of
carbocations, Saytzeff’s orientation and evidences. E1 verses E2 reactions, Factors affecting E1
and E2 reactions. Ozonolysis, electrophilic addition reactions of alkenes, Markownikoff’s
orientation, free radical addition reactions of alkenes, Anti Markownikoff’s orientation.
Stability of conjugated dienes, Diel-Alder, electrophilic addition, free radical addition
reactions of conjugated dienes, allylic rearrangement

UNIT – III
10 Hrs
Alkyl halides*
SN1 and SN2 reactions - kinetics, order of reactivity of alkyl halides, stereochemistry and
rearrangement of carbocations.
SN1 versus SN2 reactions, Factors affecting SN1 and SN2 reactions
Structure and uses of ethylchloride, Chloroform, trichloroethylene, tetrachloroethylene,
dichloromethane, tetrachloromethane and iodoform.
Alcohols* - Qualitative tests, Structure and uses of Ethyl alcohol, Methyl alcohol,
chlorobutanol, Cetosteryl alcohol, Benzyl alcohol, Glycerol, Propylene glycol

UNIT – IV
10 Hrs
Carbonyl compounds* (Aldehydes and ketones)
Nucleophilic addition, Electromeric effect, aldol condensation, Crossed Aldol condensation,
Cannizzaro reaction, Crossed Cannizzaro reaction, Benzoin condensation, Perkin
condensation, qualitative tests, Structure and uses of Formaldehyde, Paraldehyde, Acetone,
Chloral hydrate, Hexamine, Benzaldehyde, Vanilin, Cinnamaldehyde.

UNIT – V
08 Hrs
Carboxylic acids*
Acidity of carboxylic acids, effect of substituents on acidity, inductive effect and qualitative
tests for carboxylic acids ,amide and ester
Structure and Uses of Acetic acid, Lactic acid, Tartaric acid, Citric acid, Succinic acid.
Oxalic acid, Salicylic acid, Benzoic acid, Benzyl benzoate, Dimethyl phthalate, Methyl
salicylate and Acetyl salicylic acid
Aliphatic amines* - Basicity, effect of substituent on Basicity. Qualitative test, Structure and
uses of Ethanolamine, Ethylenediamine, Amphetamine

BP 208P. PHARMACEUTICAL ORGANIC CHEMISTRY – I (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

I. Systematic qualitative analysis of unknown organic compounds like
 1. Preliminary test: Color, odour, aliphatic/aromatic compounds, saturation and
 unsaturation, etc.
 2. Detection of elements like Nitrogen, Sulphur and Halogen by Lassaigne’s test
 3. Solubility test
5. Melting point/Boiling point of organic compounds
6. Identification of the unknown compound from the literature using melting point/ boiling point.
7. Preparation of the derivatives and confirmation of the unknown compound by melting point/ boiling point.
8. Minimum 5 unknown organic compounds to be analysed systematically.

II. Preparation of suitable solid derivatives from organic compounds
III. Construction of molecular models

Recommended Books (Latest Editions)
1. Organic Chemistry by Morrison and Boyd
2. Organic Chemistry by I.L. Finar, Volume-I
4. Organic Chemistry by P.L. Soni
5. Practical Organic Chemistry by Mann and Saunders.
8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
9. Reaction and reaction mechanism by Ahluwaliah/Chatwal.

BP 203T. BIOCHEMISTRY (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: Biochemistry deals with complete understanding of the molecular levels of the chemical process associated with living cells. The scope of the subject is providing biochemical facts and the principles to understand metabolism of nutrient molecules in physiological and pathological conditions. It is also emphasizing on genetic organization of mammalian genome and hetero & autocatalytic functions of DNA.

Objectives: Upon completion of course student shell able to
- Understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
- Understand the metabolism of nutrient molecules in physiological and pathological conditions.
- Understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Course Content:

UNIT – I

Biomolecules
Introduction, classification, chemical nature and biological role of carbohydrate, lipids, nucleic acids, amino acids and proteins.

Bioenergetics
Concept of free energy, endergonic and exergonic reaction, Relationship between free energy, enthalpy and entropy; Redox potential.
Energy rich compounds; classification; biological significances of ATP and cyclic AMP

UNIT – II
Carbohydrate metabolism
Glycolysis – Pathway, energetics and significance
Citric acid cycle- Pathway, energetics and significance
HMP shunt and its significance
Glucose-6-Phosphate dehydrogenase (G6PD) deficiency
Glycogen metabolism Pathways and glycogen storage diseases (GSD)
Gluconeogenesis- Pathway and its significance
Hormonal regulation of blood glucose level and Diabetes mellitus

Biological oxidation
Electron transport chain (ETC) and its mechanism.
Oxidative phosphorylation & its mechanism and substrate phosphorylation
Inhibitors ETC and oxidative phosphorylation/Uncouplers level

UNIT – III
Lipid metabolism
β-Oxidation of saturated fatty acid (Palmitic acid)
Formation and utilization of ketone bodies; ketoacidosis
De novo synthesis of fatty acids (Palmitic acid)
Biological significance of cholesterol and conversion of cholesterol into bile acids, steroid hormone and vitamin D
Disorders of lipid metabolism: Hypercholesterolemia, atherosclerosis, fatty liver and obesity.

Amino acid metabolism
General reactions of amino acid metabolism: Transamination, deamination & decarboxylation, urea cycle and its disorders
Catabolism of phenylalanine and tyrosine and their metabolic disorders (Phenyketonuria, Albinism, alkeptonuria, tyrosinemia)
Synthesis and significance of biological substances; 5-HT, melatonin, dopamine, noradrenaline, adrenaline
Catabolism of heme; hyperbilirubinemia and jaundice.

UNIT – IV
Nucleic acid metabolism and genetic information transfer
Biosynthesis of purine and pyrimidine nucleotides
Catabolism of purine nucleotides and Hyperuricemia and Gout disease
Organization of mammalian genome
Structure of DNA and RNA and their functions
DNA replication (semi conservative model)
Transcription or RNA synthesis
Genetic code, Translation or Protein synthesis and inhibitors

UNIT – V
Enzymes
Introduction, properties, nomenclature and IUB classification of enzymes
Enzyme kinetics (Michaelis plot, Line Weaver Burke plot)
Enzyme inhibitors with examples
Regulation of enzymes: enzyme induction and repression, allosteric enzymes regulation
Therapeutic and diagnostic applications of enzymes and isoenzymes
Coenzymes –Structure and biochemical functions
BP 209P. BIOCHEMISTRY (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose, Sucrose and starch)
2. Identification tests for Proteins (albumin and Casein)
3. Quantitative analysis of reducing sugars (DNSA method) and Proteins (Biuret method)
4. Qualitative analysis of urine for abnormal constituents
5. Determination of blood creatinine
6. Determination of blood sugar
7. Determination of serum total cholesterol
8. Preparation of buffer solution and measurement of pH
9. Study of enzymatic hydrolysis of starch
10. Determination of Salivary amylase activity
11. Study the effect of Temperature on Salivary amylase activity.
12. Study the effect of substrate concentration on salivary amylase activity.

Recommended Books (Latest Editions)
4. Biochemistry by D. Satyanarayan and U.Chakrapani
7. Outlines of Biochemistry by Conn and Stumpf
10. Practical Biochemistry for Medical students by Rajagopal and Ramakrishna.
11. Practical Biochemistry by Harold Varley.

BP 204T. PATHOPHYSIOLOGY (THEORY)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: Pathophysiology is the study of causes of diseases and reactions of the body to such disease producing causes. This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge required to practice medicine safely, confidently, rationally and effectively.

Objectives: Upon completion of the subject student shall be able to –
- Describe the etiology and pathogenesis of the selected disease states;
- Name the signs and symptoms of the diseases; and
- Mention the complications of the diseases.
Course content:

UNIT – I
Basic principles of Cell injury and Adaptation:

Basic mechanism involved in the process of inflammation and repair:
Introduction, Clinical signs of inflammation, Different types of Inflammation, Mechanism of Inflammation – Alteration in vascular permeability and blood flow, migration of WBC’s, Mediators of inflammation, Basic principles of wound healing in the skin, Pathophysiology of Atherosclerosis.

UNIT – II
Cardiovascular System: Hypertension, congestive heart failure, ischemic heart disease (angina, myocardial infarction, atherosclerosis and arteriosclerosis)

Respiratory system: Asthma, Chronic obstructive airways diseases.

Renal system: Acute and chronic renal failure.

UNIT – III
Haematological Diseases:
Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia

Endocrine system: Diabetes, thyroid diseases, disorders of sex hormones

Nervous system: Epilepsy, Parkinson’s disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer’s disease.

Gastrointestinal system: Peptic Ulcer

UNIT – IV
Inflammatory bowel diseases, jaundice, hepatitis (A, B, C, D, E, F) alcoholic liver disease.

Disease of bones and joints: Rheumatoid arthritis, osteoporosis and gout

Principles of cancer: classification, etiology and pathogenesis of cancer

UNIT – V
Infectious diseases: Meningitis, Typhoid, Leprosy, Tuberculosis, Urinary tract infections

Sexually transmitted diseases: AÏDS, Syphilis, Gonorrhea

Recommended Books (Latest Editions)
1. Vinay Kumar, Abul K. Abas, Jon C. Aster; Robbins & Cotran Pathologic Basis of Disease; South Asia edition; India; Elsevier; 2014.
4. Best, Charles Herbert 1899-1978; Taylor, Norman Burke 1885-1972; West, John B (John Burnard); Best and Taylor’s Physiological basis of medical practice; 12th edition; united states;
5. William and Wilkins, Baltimore; 1991 [1990 printing].
9. V. Kumar, R. S. Cotran and S. L. Robbins; Basic Pathology; 6th edition; Philadelphia; WB Saunders Company; 1997.

Recommended Journals
1. The Journal of Pathology. ISSN: 1096-9896 (Online)
2. The American Journal of Pathology. ISSN: 0002-9440
3. Pathology. 1465-3931 (Online)
4. International Journal of Physiology, Pathophysiology and Pharmacology. ISSN: 1944-8171 (Online)
5. Indian Journal of Pathology and Microbiology. ISSN-0377-4929.

BP 205T. COMPUTER APPLICATIONS IN PHARMACY (Theory)

Hours per week: 3L
Credit: 3
End Examination: 50 Marks
Midsem: 25 Marks

Scope: This subject deals with the introduction Database, Database Management system, computer application in clinical studies and use of databases.

Objectives: Upon completion of the course the student shall be able to
- know the various types of application of computers in pharmacy
- know the various types of databases
- know the various applications of databases in pharmacy

Course content:

UNIT – I
10 Hrs
Number system: Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One’s complement ,Two’s complement method, binary multiplication, binary division

Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project.

UNIT – II
09 Hrs
Web technologies: Introduction to HTML, XML, CSS and Programming languages, introduction to web servers and Server Products
Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database
UNIT – III
10 Hrs
Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring Diagnostic System, Lab-diagnostic System, Patient Monitoring System, Pharma Information System

UNIT – IV
08 Hrs
Bioinformatics: Introduction, Objective of Bioinformatics, Bioinformatics Databases, Concept of Bioinformatics, Impact of Bioinformatics in Vaccine Discovery

UNIT – V
08 Hrs
Computers as data analysis in Preclinical development:
Chromatographic data analysis (CDS), Laboratory Information management System (LIMS) and Text Information Management System (TIMS)

BP 210P. COMPUTER APPLICATIONS IN PHARMACY (Practical)

Hours per week: 2
Credit: 1
End Examination: 15 Marks
Midsem: 10 Marks

1. Design a questionnaire using a word processing package to gather information about a particular disease.
2. Create a HTML web page to show personal information.
3. Retrieve the information of a drug and its adverse effects using online tools
4. Creating mailing labels Using Label Wizard, generating label in MS WORD
5. Create a database in MS Access to store the patient information with the required fields using access
6. Design a form in MS Access to view, add, delete and modify the patient record in the database
7. Generating report and printing the report from patient database
8. Creating invoice table using – MS Access
9. Drug information storage and retrieval using MS Access
10. Creating and working with queries in MS Access
11. Exporting Tables, Queries, Forms and Reports to web pages
12. Exporting Tables, Queries, Forms and Reports to XML pages

Recommended books (Latest edition):

2. Computer Application in Pharmaceutical Research and Development –Sean Ekins – Wiley-Interscience, A John Willey and Sons, INC., Publication, USA
BP 206T. ENVIRONMENTAL SCIENCES (Theory)

Hours per week: 3L
Credit: 3
End Examination: 50 Marks
Midsem: 25 Marks

Scope: Environmental Sciences is the scientific study of the environmental system and the status of its inherent or induced changes on organisms. It includes not only the study of physical and biological characters of the environment but also the social and cultural factors and the impact of man on environment.

Objectives: Upon completion of the course the student shall be able to:

- Create the awareness about environmental problems among learners.
- Impart basic knowledge about the environment and its allied problems.
- Develop an attitude of concern for the environment.
- Motivate learner to participate in environment protection and environment improvement.
- Acquire skills to help the concerned individuals in identifying and solving environmental problems.
- Strive to attain harmony with nature.

Course content:

UNIT – I
The Multidisciplinary nature of environmental studies
Natural Resources
Renewable and non-renewable resources:
Natural resources and associated problems
a) Forest resources; b) Water resources; c) Mineral resources; d) Food resources; e) Energy resources; f) Land resources
Role of an individual in conservation of natural resources.

UNIT – II
Ecosystems
Concept of an ecosystem.
Structure and function of an ecosystem.
Introduction, types, characteristic features, structure and function of the ecosystems: Forest ecosystem; Grassland ecosystem; Desert ecosystem; Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT – III
Environmental Pollution: Air pollution; Water pollution; Soil pollution

Recommended Books (Latest Editions):
1. Y.K. Sing, Environmental Science, New Age International Pvt, Publishers, Bangalore
3. Bharucha Erach, The Biodiversity of India, Mapin Pu blishing Pvt. Ltd., Ahmedabad – 380 013, India,
5. Clark R.S., Marine Pollution, Clanderson Press Oxford
8. Down of Earth, Centre for Science and Environment
SEMESTER – III

BP 301T. PHARMACEUTICAL ORGANIC CHEMISTRY – II (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject deals with general methods of preparation and reactions of some organic compounds. Reactivity of organic compounds are also studied here. The syllabus emphasizes on mechanisms and orientation of reactions. Chemistry of fats and oils are also included in the syllabus.

Objectives: Upon completion of the course the student shall be able to
- write the structure, name and the type of isomerism of the organic compound
- write the reaction, name the reaction and orientation of reactions
- account for reactivity/stability of compounds,
- prepare organic compounds

Course Content:
General methods of preparation and reactions of compounds superscripted with asterisk (*) to be explained
To emphasize on definition, types, classification, principles/mechanisms, applications, examples and differences

UNIT – I
Benzene and its derivatives
A. Analytical, synthetic and other evidences in the derivation of structure of benzene, Orbital picture, resonance in benzene, aromatic characters, Huckel’s rule
B. Reactions of benzene - nitration, sulphonation, halogenation reactivity, Friedelcrafts alkylation - reactivity, limitations, Friedelcrafts acylation.
C. Substituents, effect of substituents on reactivity and orientation of mono substituted benzene compounds towards electrophilic substitution reaction
D. Structure and uses of DDT, Saccharin, BHC and Chloramine

UNIT – II
Phenols* - Acidity of phenols, effect of substituents on acidity, qualitative tests, Structure and uses of phenol, cresols, resorcinol, naphthols
Aromatic Amines* - Basicity of amines, effect of substituents on basicity, and synthetic uses of aryl diazonium salts
Aromatic Acids*– Acidity, effect of substituents on acidity and important reactions of benzoic acid.

UNIT – III
Fats and Oils
a. Fatty acids – reactions.
c. Analytical constants – Acid value, Saponification value, Ester value, Iodine value, Acetyl value, Reichert Meissl (RM) value – significance and principle involved in their determination.
UNIT – IV
Polynuclear hydrocarbons: 08 Hrs
a. Synthesis, reactions
b. Structure and medicinal uses of Naphthalene, Phenanthrene, Anthracene, Diphenylmethane, Triphenylmethane and their derivatives

UNIT – V 07 Hrs
Cyclo alkanes*
Stabilities – Baeyer’s strain theory, limitation of Baeyer’s strain theory, Coulson and Moffitt’s modification, Sachse Mohr’s theory (Theory of strainless rings), reactions of cyclopropane and cyclobutane only

BP 305P. PHARMACEUTICAL ORGANIC CHEMISTRY – II (Practical)
Hours per week: 4 End Examination: 35 Marks
Credit: 2 Midsem: 15 Marks

I Experiments involving laboratory techniques-Recrystallization, Steam distillation
II Determination of following oil values (including standardization of reagents)
 a. Acid value
 b. Saponification value
 c. Iodine value
III Preparation of compounds
 • Benzanilide/Phenyl benzoate/Acetanilide from Aniline/ Phenol/Aniline by acylation reaction.
 • 2,4,6-Tribromo aniline/Para bromo acetonilide from Aniline/
 • Acetanilide by halogenation (Bromination) reaction.
 • 5-Nitro salicylic acid/Meta di nitro benzene from Salicylic acid /Nitro benzene by nitration reaction.
 • Benzoic acid from Benzyl chloride by oxidation reaction.
 • Benzoic acid/ Salicylic acid from alkyl benzoate/ alkyl salicylate by hydrolysis reaction.
 • 1-Phenyl azo-2-napthol from Aniline by diazotization and coupling reactions.
 • Benzil from Benzoin by oxidation reaction.
 • Dibenzal acetone from Benzaldehyde by Claisen Schmidt reaction
 • Cinnamamic acid from Benzaldehyde by Perkin reaction
 • P-Iodo benzoic acid from P-amino benzoic acid

Recommended Books (Latest Editions)
1. Organic Chemistry by Morrison and Boyd
2. Organic Chemistry by I.L. Finar, Volume-I
4. Organic Chemistry by P.L.Soni
5. Practical Organic Chemistry by Mann and Saunders.
8. Introduction to Organic Laboratory techniques by Pavia, Lampman and Kriz.
BP 302T. PHYSICAL PHARMACEUTICS – I (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Scope: The course deals with the various physicochemical properties and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to
- Understand various physicochemical properties of drug molecules in the designing the dosage forms
- Know the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations
- Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT – I
10 Hrs
Solubility of drugs: Solubility expressions, mechanisms of solute solvent interactions, ideal solubility parameters, solvation & association, quantitative approach to the factors influencing solubility of drugs, diffusion principles in biological systems. Solubility of gas in liquids, solubility of liquids in liquids, (Binary solutions, ideal solutions) Raoult’s law, real solutions. Partially miscible liquids, Critical solution temperature and applications. Distribution law, its limitations and applications

UNIT – II
10 Hrs
States of Matter and properties of matter: State of matter, changes in the state of matter, latent heats, vapour pressure, sublimation critical point, eutectic mixtures, gases, aerosols-inhalers, relative humidity, liquid complexes, liquid crystals, glassy states, solid crystalline, amorphous & polymorphism.
Physicochemical properties of drug molecules: Refractive index, optical rotation, dielectric constant, dipole moment, dissociation constant, determinations and applications

UNIT – III
10 Hrs
Surface and interfacial phenomenon: Liquid interface, surface & interfacial tensions, surface free energy, measurement of surface & interfacial tensions, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB Scale, solubilisation, detergency, adsorption at solid interface.

UNIT – IV
08 Hrs
UNIT – V 07 Hrs

pH, buffers and Isotonic solutions: Sorensen’s pH scale, pH determination (electrometric and calorimetric), applications of buffers, buffer equation, buffer capacity, buffers in pharmaceutical and biological systems, buffered isotonic solutions.

BP 306P. PHYSICAL PHARMACEUTICS – I (Practical)

Hours per week: 4 End Examination: 35 Marks
Credit: 2 Midsem: 15 Marks

1. Determination of solubility of drug at room temperature
2. Determination of pKa value by Half Neutralization/ Henderson Hasselbalch equation.
3. Determination of Partition co-efficient of benzoic acid in benzene and water
4. Determination of Partition co-efficient of Iodide in CCl₄ and water
5. Determination of % composition of NaCl in a solution using phenol-water system by CST method
6. Determination of surface tension of given liquids by drop count and drop weight method
7. Determination of HLB number of a surfactant by saponification method
8. Determination of Freundlich and Langmuir constants using activated charcoal
9. Determination of critical micellar concentration of surfactants
10. Determination of stability constant and donor acceptor ratio of PABA-Caffeine complex by solubility method
11. Determination of stability constant and donor acceptor ratio of Cupric-Glycine complex by pH titration method

Recommended Books: (Latest Editions)
1. Physical Pharmacy by Alfred Martin
2. Experimental Pharmaceutics by Eugene, Parott.
3. Tutorial Pharmacy by Cooper and Gunn.
7. Physical Pharmaceutics by Ramasamy C and ManavalanR.
8. Laboratory Manual of Physical Pharmaceutics, C.V.S. Subramanyam, J.Thimma settee
9. Physical Pharmaceutics by C.V.S. Subramanyam
10. Test book of Physical Phramacy, by Gaurav Jain & Roop K. Khar

BP 303T. PHARMACEUTICAL MICROBIOLOGY (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: Study of all categories of microorganisms especially for the production of alcohol antibiotics, vaccines, vitamins enzymes etc..

Objectives: Upon completion of the subject student shall be able to;

- Understand methods of identification, cultivation and preservation of various microorganisms
To understand the importance and implementation of sterilization in pharmaceutical processing and industry
Learn sterility testing of pharmaceutical products.
Carried out microbiological standardization of Pharmaceuticals.
Understand the cell culture technology and its applications in pharmaceutical industries.

Course content:

UNIT – I 10 Hrs
Introduction, history of microbiology, its branches, scope and its importance.
Introduction to Prokaryotes and Eukaryotes
Study of ultra-structure and morphological classification of bacteria, nutritional requirements, raw materials used for culture media and physical parameters for growth, growth curve, isolation and preservation methods for pure cultures, cultivation of anaerobes, quantitative measurement of bacterial growth (total & viable count).
Study of different types of microscopy - phase contrast microscopy, dark field microscopy and electron microscopy.

UNIT – II 10 Hrs
Identification of bacteria using staining techniques (simple, Gram’s & Acid fast staining) and biochemical tests (IMViC).
Study of principle, procedure, merits, demerits and applications of physical, chemical, gaseous, radiation and mechanical method of sterilization.
Evaluation of the efficiency of sterilization methods.
Equipments employed in large scale sterilization.
Sterility indicators.

UNIT – III 10 Hrs
Study of morphology, classification, reproduction/replication and cultivation of Fungi, Viruses and Bacteria.
Classification and mode of action of disinfectants
Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions
Evaluation of bactericidal & Bacteriostatic.
Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.

UNIT – IV 08 Hrs
Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification.
Assessment of a new antibiotic.

UNIT – V 07 Hrs
Types of spoilage, factors affecting the microbial spoilage of pharmaceutical products, sources and types of microbial contaminants, assessment of microbial contamination and spoilage.
Preservation of pharmaceutical products using antimicrobial agents, evaluation of microbial stability of formulations.
Growth of animal cells in culture, general procedure for cell culture, Primary, established and transformed cell cultures.
Application of cell cultures in pharmaceutical industry and research.

BP 307P. PHARMACEUTICAL MICROBIOLOGY (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Introduction and study of different equipments and processing, e.g., B.O.D. incubator, Laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer, refrigerator, microscopes used in experimental microbiology.
2. Sterilization of glassware, preparation and sterilization of media.
4. Staining methods- Simple, Grams staining and acid fast staining (Demonstration with practical).
5. Isolation of pure culture of micro-organisms by multiple streak plate technique and other techniques.
6. Microbiological assay of antibiotics by cup plate method and other methods
7. Motility determination by Hanging drop method.
8. Sterility testing of pharmaceuticals.
9. Bacteriological analysis of water

Recommended Books (Latest Editions)
5. Rose: Industrial Microbiology.
7. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
8. Peppler: Microbial Technology.
10. Ananthnarayan: Text Book of Microbiology, Orient-Longman, Chennai
12. N.K.Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
13. Bergeys manual of systematic bacteriology, Williams and Wilkins - A Waverly company

BP 304T. PHARMACEUTICAL ENGINEERING (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This course is designed to impart a fundamental knowledge on the art and science of various unit operations used in pharmaceutical industry.

Objectives: Upon completion of the course student shall be able:
• To know various unit operations used in Pharmaceutical industries.
• To understand the material handling techniques.
• To perform various processes involved in pharmaceutical manufacturing process.
• To carry out various test to prevent environmental pollution.
• To appreciate and comprehend significance of plant lay out design for optimum use of resources.
• To appreciate the various preventive methods used for corrosion control in Pharmaceutical industries.

Course content:

UNIT – I 10 Hrs
Flow of fluids: Types of manometers, Reynolds number and its significance, Bernoulli’s theorem and its applications, Energy losses, Orifice meter, Venturimeter, Pitot tube and Rotameter.
Size Separation: Objectives, applications & mechanism of size separation, official standards of powders, sieves, size separation, principles, construction, working, uses, merits and demerits of Sieve shaker, cyclone separator, air separator, bag filter & elutriation tank.

UNIT – II 10 Hrs
Evaporation: Objectives, applications and factors influencing evaporation, differences between evaporation and other heat process. principles, construction, working, uses, merits and demerits of Steam jacketed kettle, horizontal tube evaporator, climbing film evaporator, forced circulation evaporator, multiple effect evaporator & Economy of multiple effect evaporator.
Distillation: Basic Principles and methodology of simple distillation, flash distillation, fractional distillation, distillation under reduced pressure, steam distillation & molecular distillation

UNIT – III 10 Hrs
Drying: Objectives, applications & mechanism of drying process, measurements & applications of Equilibrium Moisture content, rate of drying curve. Principles, construction, working, uses, merits and demerits of Tray dryer, drum dryer spray dryer, fluidized bed dryer, vacuum dryer, freeze dryer.
Mixing: Objectives, applications & factors affecting mixing, Difference between solid and liquid mixing, mechanism of solid mixing, liquids mixing and semisolids mixing. Principles, Construction, Working, uses, Merits and Demerits of Double cone blender, twin shell blender, ribbon blender, Sigma blade mixer, planetary mixers, Propellers, Turbines, Paddles & Silverson Emulsifier,

UNIT – IV 08 Hrs
Centrifugation: Objectives, principle & applications of Centrifugation, principles, construction, working, uses, merits and demerits of Perforated basket centrifuge, Non-perforated basket centrifuge, semi continuous centrifuge & super centrifuge.

UNIT – V

Materials of pharmaceutical plant construction, Corrosion and its prevention: Factors affecting during materials selected for Pharmaceutical plant construction, Theories of corrosion, types of corrosion and there prevention.

Ferrous and nonferrous metals, inorganic and organic non metals, basic of material handling systems.

Recommended Books: (Latest Editions)

BP 308P - PHARMACEUTICAL ENGINEERING (Practical)

Hours per week: 4
End Examination: 35 Marks
Credit: 2
Midsem: 15 Marks

1. Determination of radiation constant of brass, iron, unpainted and painted glass.
2. Steam distillation – To calculate the efficiency of steam distillation.
3. To determine the overall heat transfer coefficient by heat exchanger.
5. Determination of moisture content and loss on drying.
7. Description of Construction working and application of Pharmaceutical Machinery such as rotary tablet machine, fluidized bed coater, fluid energy mill, de humidifier.
8. Size analysis by sieving – To evaluate size distribution of tablet granulations – Construction of various size frequency curves including arithmetic and logarithmic probability plots.
9. Size reduction: To verify the laws of size reduction using ball mill and determining Kicks, Rittinger’s, Bond’s coefficients, power requirement and critical speed of Ball Mill.
10. Demonstration of colloid mill, planetary mixer, fluidized bed dryer, freeze dryer and such other major equipment.
11. Factors affecting Rate of Filtration and Evaporation (Surface area, Concentration and Thickness/ viscosity)
12. To study the effect of time on the Rate of Crystallization.
13. To calculate the uniformity Index for given sample by using Double Cone
SEMESTER – IV

BP 401T. PHARMACEUTICAL ORGANIC CHEMISTRY – III (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject imparts knowledge on stereo-chemical aspects of organic compounds and organic reactions, important named reactions, chemistry of important heterocyclic compounds. It also emphasizes on medicinal and other uses of organic compounds.

Objectives: At the end of the course, the student shall be able to

- understand the methods of preparation and properties of organic compounds
- explain the stereo chemical aspects of organic compounds and stereo chemical reactions
- know the medicinal uses and other applications of organic compounds

Course Content:
Note: To emphasize on definition, types, mechanisms, examples, uses/applications

UNIT – I
10 Hrs
Stereo isomerism
Optical isomerism –
Optical activity, enantiomerism, diastereoisomerism, meso compounds
Elements of symmetry, chiral and achiral molecules
DL system of nomenclature of optical isomers, sequence rules, RS system of nomenclature of optical isomers
Reactions of chiral molecules
Racemic modification and resolution of racemic mixture.
Asymmetric synthesis: partial and absolute

UNIT – II
10 Hrs
Geometrical isomerism
Nomenclature of geometrical isomers (Cis Trans, EZ, Syn Anti systems)
Methods of determination of configuration of geometrical isomers.
Conformational isomerism in Ethane, n-Butane and Cyclohexane.
Stereo isomerism in biphenyl compounds (Atropisomerism) and conditions for optical activity.
Stereospecific and stereoselective reactions

UNIT – III
10 Hrs
Heterocyclic compounds:
Nomenclature and classification
Synthesis, reactions and medicinal uses of following compounds/derivatives-Pyrrole, Furan, and Thiophene
Relative aromaticity and reactivity of Pyrrole, Furan and Thiophene

UNIT – IV
08 Hrs
Synthesis, reactions and medicinal uses of following compounds/derivatives Pyrazole, Imidazole, Oxazole and Thiazole.
Pyridine, Quinoline, Isoquinoline, Acridine and Indole. Basicity of pyridine
Synthesis and medicinal uses of Pyrimidine, Purine, azepines and their derivatives

UNIT – V
Reactions of synthetic importance
Metal hydride reduction (NaBH₄ and LiAlH₄), Clemmensen reduction, Birch reduction, Wolff Kishner reduction.
Oppenauer-oxidation and Dakin reaction.
Beckmanns rearrangement and Schmidt rearrangement.
Claisen-Schmidt condensation

Recommended Books (Latest Editions)
1. Organic chemistry by I.L. Finar, Volume-I & II.
3. Heterocyclic Chemistry by Raj K. Bansal
4. Organic Chemistry by Morrison and Boyd
5. Heterocyclic Chemistry by T.L. Gilchrist

BP 402T. MEDICINAL CHEMISTRY – I (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to
- understand the chemistry of drugs with respect to their pharmacological activity
- understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- know the Structural Activity Relationship (SAR) of different class of drugs
- write the chemical synthesis of some drugs

Course Content:
Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT – I
Introduction to Medicinal Chemistry
History and development of medicinal chemistry
Physicochemical properties in relation to biological action-Ionization, Solubility, Partition Coefficient. Hydrogen bonding, Protein binding, Chelation, Bioisosterism, Optical and Geometrical isomerism.
Drug metabolism principle - Phase I and Phase II. Factors affecting drug metabolism including stereo chemical aspects.
UNIT – II
Drugs acting on Autonomic Nervous System
Adrenergic Neurotransmitters:
Biosynthesis and catabolism of catecholamine.
Adrenergic receptors (Alpha & Beta) and their distribution.
Sympathomimetic agents: SAR of Sympathomimetic agents
Direct acting: Nor-epinephrine, Epinephrine, Phenylephrine*, Dopamine, Methyldopa, Clonidine, Dobutamine, Isoproterenol, Terbutaline, Salbutamol*, Bitolterol, Naphazoline, Oxymetazoline and Xylometazoline.
- Indirect acting agents: Hydroxyamphetamine, Pseudoephedrine, Propylhexedrine.
- Agents with mixed mechanism: Ephedrine, Metaraminol.
Adrenergic Antagonists:
Alpha adrenergic blockers: Tolazoline*, Phentolamine, Phenoxybenzamine, Prazosin, Dihydroergotamine, Methysergide.

UNIT – III
Cholinergic neurotransmitters:
Biosynthesis and catabolism of acetylcholine.
Cholinergic receptors (Muscarinic & Nicotinic) and their distribution.
Parasympathomimetic agents: SAR of Parasympathomimetic agents
Direct acting agents: Acetylcholine, Carbachol*, Bethanechol, Methacholine, Pilocarpine.
Cholinesterase reactivator: Pralidoxime chloride.
Cholinergic Blocking agents: SAR of cholinolytic agents
Solanaceous alkaloids and analogues: Atropine sulphate, Hyoscyamine sulphate, Scopolamine hydrobromide, Homatropine hydrobromide, Ipratropium bromide*.
Synthetic cholinergic blocking agents: Tropicamide, Cyclopentolate hydrochloride, Clidinium bromide, Dicyclomine hydrochloride*, Glycopyrrolate, Methantheline bromide, Propantheline bromide, Benztrapine mesylate, Orphenadrine citrate, Biperidine ydrochloride, Procyclidine hydrochloride*, Tridihexethyl chloride, Isopropanamide iodide, Ethopropazine hydrochloride.

UNIT – IV
Drugs acting on Central Nervous System
A. Sedatives and Hypnotics:
Benzodiazepines: SAR of Benzodiazepines, Chlordiazepoxide, Diazepam*, Oxazepam, Chlorazepate, Lorazepam, Alprazolam, Zolpidem
Barbiturates: SAR of barbiturates, Barbital*, Phenobarbital, Mepobarbital, Amobarbital, Butabarbital, Pentobarbital, Secobarbital
Miscellaneous:
Amides & imides: Glutethimide.
Alcohol & their carbamate derivatives: Meprobamate, Ethchlorvynol.
Aldehyde & their derivatives: Triclofos sodium, Paraldehyde.
B. Antipsychotics

Phenothiazines: SAR of Phenothiazines - Promazine hydrochloride, Chlorpromazine hydrochloride*, Triflupromazine, Thoridazine hydrochloride, Piperaetazine hydrochloride, Prochlorperazine maleate, Trifluoperazine hydrochloride.

Ring Analogues of Phenothiazines: Chlorprothixene, Thiothixene, Loxapine succinate, Clozapine.

Fluro buterophenones: Haloperidol, Droperidol, Risperidone.

Beta amino ketones: Molindone hydrochloride.

Benzamides: Sulpieride.

C. Anticonvulsants:

SAR of Anticonvulsants, mechanism of anticonvulsant action

Barbiturates: Phenobarbitone, Methabarbital.

Hydantoin: Phenytoin*, Mephenytoin, Ethotoin

Oxazolidine

Succinimides: Phensuximide, Methsuximide, Ethosuximide*

Urea and monoacylureas: Phencemide, Carbamazepine*

Benzodiazepines: Clonazepam

Miscellaneous: Primidone, Valproic acid, Gabapentin, Felbamate

UNIT – V

Drugs acting on Central Nervous System

General anesthetics:

Inhalation anesthetics: Halothane*, Methoxyflurane, Enflurane, Sevoflurane, Isoflurane, Desflurane.

Ultra short acting barbiturates: Methohexital sodium*, Thiamylal sodium, Thiopental sodium.

Dissociative anesthetics: Ketamine hydrochloride,*

Narcotic and non-narcotic analgesics

Morphine and related drugs: SAR of Morphine analogues, Morphine sulphate, Codeine, Meperidine hydrochloride, Anilerdine hydrochloride, Diphenoxylate hydrochloride, Loperamide hydrochloride, Fentanyl citrate*, Methadone hydrochloride*, Propoxyphene hydrochloride, Pentazocine, Levorphanol tartarate.

Narcotic antagonists: Nalorphine hydrochloride, Levallorphan tartarate, Naloxone hydrochloride.

Anti-inflammatory agents: Sodium salicylate, Aspirin, Mefenamic acid*, Meclofenamate, Indomethacin, Sulindac, Tolmetin, Zomepric, Diclofenac, Ketorolac, Ibuprofen*, Naproxen, Piroxicam, Phenacetin, Acetaminophen, Antipyrine, Phenylbutazone.

BP 406P. MEDICINAL CHEMISTRY – I (Practical)

Hours per week: 4 End Examination: 35 Marks
Credit: 2 Midsem: 15 Marks

I Preparation of drugs/ intermediates

- 1,3-pyrazole
- 1,3-oxazole
- Benzimidazole
- Benztiazole
- 2,3- diphenyl quinoxaline
- Benzocaine
• Phenytoin
• Phenothiazine
• Barbiturate

II Assay of drugs
• Chlorpromazine
• Phenobarbitone
• Atropine
• Ibuprofen
• Aspirin
• Furosemide

III Determination of Partition coefficient for any two drugs

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.

BP 403T. PHYSICAL PHARMACEUTICS – II (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: The course deals with the various physicochemical properties and principles involved in dosage forms/formulations. Theory and practical components of the subject help the student to get a better insight into various areas of formulation research and development, and stability studies of pharmaceutical dosage forms.

Objectives: Upon the completion of the course student shall be able to
• Understand various physicochemical properties of drug molecules in the designing the dosage forms
• Know the principles of chemical kinetics & to use them for stability testing and determination of expiry date of formulations
• Demonstrate use of physicochemical properties in the formulation development and evaluation of dosage forms.

Course Content:

UNIT – I 07 Hrs
Colloidal dispersions: Classification of dispersed systems & their general characteristics, size & shapes of colloidal particles, classification of colloids & comparative account of their general properties. Optical, kinetic & electrical properties. Effect of electrolytes, coacervation, peptization & protective action.
UNIT – II

Rheology: Newtonian systems, law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity, capillary, falling Sphere, rotational viscometers

Deformation of solids: Plastic and elastic deformation, Heckel equation, Stress, Strain, Elastic Modulus

UNIT – III

Coarse dispersion: Suspension, interfacial properties of suspended particles, settling in suspensions, formulation of flocculated and deflocculated suspensions. Emulsions and theories of emulsification, microemulsion and multiple emulsions; Stability of emulsions, preservation of emulsions, rheological properties of emulsions and emulsion formulation by HLB method.

UNIT – IV

Micromeretics: Particle size and distribution, mean particle size, number and weight distribution, particle number, methods for determining particle size by different methods, counting and separation method, particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness & flow properties.

UNIT – V

BP 407P. PHYSICAL PHARMACEUTICS – II (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Determination of particle size, particle size distribution using sieving method
2. Determination of particle size, particle size distribution using Microscopic method
3. Determination of bulk density, true density and porosity
4. Determine the angle of repose and influence of lubricant on angle of repose
5. Determination of viscosity of liquid using Ostwald’s viscometer
6. Determination sedimentation volume with effect of different suspending agent
7. Determination sedimentation volume with effect of different concentration of single suspending agent
8. Determination of viscosity of semisolid by using Brookfield viscometer
9. Determination of reaction rate constant first order.
10. Determination of reaction rate constant second order
11. Accelerated stability studies
Recommended Books: (Latest Editions)
1. Physical Pharmacy by Alfred Martin, 6th edition
2. Experimental pharmaceutics by Eugene, Parott.
3. Tutorial pharmacy by Cooper and Gunn.
7. Physical Pharmaceutics by Ramasamy C, and Manavalan R.

BP 404T. PHARMACOLOGY – I (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: The main purpose of the subject is to understand what drugs do to the living organisms and how their effects can be applied to therapeutics. The subject covers the information about the drugs like, mechanism of action, physiological and biochemical effects (pharmacodynamics) as well as absorption, distribution, metabolism and excretion (pharmacokinetics) along with the adverse effects, clinical uses, interactions, doses, contraindications and routes of administration of different classes of drugs.

Objectives: Upon completion of this course the student should be able to
- Understand the pharmacological actions of different categories of drugs
- Explain the mechanism of drug action at organ system/sub cellular/macromolecular levels.
- Apply the basic pharmacological knowledge in the prevention and treatment of various diseases.
- Observe the effect of drugs on animals by simulated experiments
- Appreciate correlation of pharmacology with other biomedical sciences

Course Content:

UNIT – I 08 Hrs
1. General Pharmacology
 a. Introduction to Pharmacology- Definition, historical landmarks and scope of pharmacology, nature and source of drugs, essential drugs concept and routes of drug administration, Agonists, antagonists(competitive and non competitive), spare receptors, addiction, tolerance, dependence, tachyphylaxis, idiosyncrasy, allergy.
 b. Pharmacokinetics- Membrane transport, absorption, distribution, metabolism and excretion of drugs .Enzyme induction, enzyme inhibition, kinetics of elimination

UNIT – II 12 Hrs
General Pharmacology
a. Pharmacodynamics - Principles and mechanisms of drug action. Receptor theories and classification of receptors, regulation of receptors. drug receptors interactions signal transduction mechanisms, G-protein–coupled receptors, ion channel receptor, transmembrane enzyme linked receptors, transmembrane JAK-STAT binding receptor and receptors that
regulate transcription factors, dose response relationship, therapeutic index, combined effects of drugs and factors modifying drug action.

b. Adverse drug reactions.

c. Drug interactions (pharmacokinetic and pharmacodynamic)

d. Drug discovery and clinical evaluation of new drugs -Drug discovery phase, preclinical evaluation phase, clinical trial phase, phases of clinical trials and pharmacovigilance.

UNIT – III

2. Pharmacology of drugs acting on peripheral nervous system

a. Organization and function of ANS.

b. Neurohumoral transmission, co-transmission and classification of neurotransmitters.

c. Parasympathomimetics, Parasympatholytics, Sympathomimetics, sympatholytics.

d. Neuromuscular blocking agents and skeletal muscle relaxants (peripheral).

e. Local anesthetic agents.

f. Drugs used in myasthenia gravis and glaucoma

UNIT – IV

3. Pharmacology of drugs acting on central nervous system

a. Neurohumoral transmission in the C.N.S. Special emphasis on importance of various neurotransmitters like with GABA, Glutamate, Glycine, serotonin, dopamine.

b. General anesthetics and pre-anesthetics.

c. Sedatives, hypnotics and centrally acting muscle relaxants.

d. Anti-epileptics

e. Alcohol and disulfiram

UNIT – V

3. Pharmacology of drugs acting on central nervous system

b. Drugs used in Parkinson’s disease and Alzheimer’s disease.

c. CNS stimulants and nootropics.

d. Opioid analgesics and antagonists

e. Drug addiction, drug abuse, tolerance and dependence.

BP 408P.PHARMACOLOGY – I (Practical)

Hours per week: 4

Credit: 2

End Examination: 35 Marks

Midsem: 15 Marks

1. Introduction to experimental pharmacology.

2. Commonly used instruments in experimental pharmacology.

3. Study of common laboratory animals.

4. Maintenance of laboratory animals as per CPCSEA guidelines.

6. Study of different routes of drugs administration in mice/rats.

7. Study of effect of hepatic microsomal enzyme inducers on the phenobarbitone sleeping time in mice.

8. Effect of drugs on ciliary motility of frog oesophagus

9. Effect of drugs on rabbit eye.
10. Effects of skeletal muscle relaxants using rota-rod apparatus.
11. Effect of drugs on locomotor activity using actophotometer.
12. Anticonvulsant effect of drugs by MES and PTZ method.
13. Study of stereotype and anti-catatonic activity of drugs on rats/mice.
15. Study of local anesthetics by different methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)
3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott’s Illustrated Reviews - Pharmacology
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher
Alphabetical, morphological, taxonomical, chemical, pharmacological, chemo and serotaxonomical classification of drugs

Quality control of Drugs of Natural Origin:
Adulteration of drugs of natural origin. Evaluation by organoleptic, microscopic, physical, chemical and biological methods and properties.
Quantitative microscopy of crude drugs including lycopodium spore method, leaf constants, camera lucida and diagrams of microscopic objects to scale with camera lucida.

UNIT – II
Cultivation, Collection, Processing and storage of drugs of natural origin:
Cultivation and Collection of drugs of natural origin
Factors influencing cultivation of medicinal plants.
Plant hormones and their applications.
Polyploidy, mutation and hybridization with reference to medicinal plants
Conservation of medicinal plants

UNIT – III
Plant tissue culture:
Historical development of plant tissue culture, types of cultures, Nutritional requirements, growth and their maintenance.
Applications of plant tissue culture in pharmacognosy.
Edible vaccines

UNIT – IV
Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs
Powders of natural occurrence - Lycopodium, Pollen, Kamala, Lupulin
Fibers - Cotton, Jute, Hemp, Silk
Mineral drugs – Chalk, Kaolin, Bentonite, Fuller’s earth
Hallucinogens, Teratogens, Natural allergens

UNIT – V
Study of biological source, chemical nature and uses of drugs of natural origin containing following drugs
Primary metabolites: General introduction, detailed study with respect to chemistry, sources, preparation, evaluation, preservation, storage, therapeutic used and commercial utility as Pharmaceutical Aids and/or Medicines for the following Primary metabolites:
Carbohydrates: Acacia, Agar, Tragacanth, Honey, Starch
Proteins and Enzymes: Gelatin, casein, proteolytic enzymes (Papain, bromelain, serratiopeptidase, urokinase, streptokinase, pepsin).
Lipids (Waxes, fats, fixed oils): Castor oil, Chaulmoogra oil, Wool Fat, Bees Wax
Marine Drugs: Novel medicinal agents from marine sources.

BP 408P. PHARMACOGNOSY AND PHYTOCHEMISTRY – I (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Analysis of crude drugs by chemical tests: (i) Tragacanth (ii) Acacia (iii) Agar (iv) Gelatin (v) starch (vi) Honey (vii) Castor oil
2. Determination of stomatal number and index
3. Determination of vein islet number, vein islet termination and paliside ratio.
4. Determination of size of starch grains, calcium oxalate crystals by eye piece micrometer
5. Determination of Fiber length and width
6. Determination of number of starch grains by Lycopodium spore method
7. Determination of Ash value
8. Determination of Extractive values of crude drugs
9. Determination of moisture content of crude drugs
10. Determination of swelling index and foaming

Recommended Books: (Latest Editions)
3. Text Book of Pharmacognosy by T.E. Wallis
7. Essentials of Pharmacognosy, Dr.SH.Ansari, 2nd edition, Birla publications, New Delhi, 2007
8. Practical Pharmacognosy: C.K. Kokate, Purohit, Gokhlae
SEMESTER – V
BP 501T. MEDICINAL CHEMISTRY – II (Theory)

Hours per week: 3L+1T
Credit: 4

End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasizes on structure activity relationships of drugs, importance of physicochemical properties and metabolism of drugs. The syllabus also emphasizes on chemical synthesis of important drugs under each class.

Objectives: Upon completion of the course the student shall be able to
- Understand the chemistry of drugs with respect to their pharmacological activity
- Understand the drug metabolic pathways, adverse effect and therapeutic value of drugs
- Know the Structural Activity Relationship of different class of drugs
- Study the chemical synthesis of selected drugs

Course Content:
Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*)

UNIT – I
10 Hrs
Antihistaminic agents: Histamine, receptors and their distribution in the human body
H1-antagonists: Diphenhydramine hydrochloride*, Dimenhydrinate, Doxylamines cuccinate, Clemastine fumarate, Diphenylhyraline hydrochloride, Tripelenamine hydrochloride, Chlorcyclizine hydrochloride, Meclizine hydrochloride, Buclizine hydrochloride, Chlumpheniramine maleate, Triprolidine hydrochloride*, Phenidamine tartrate, Promethazine hydrochloride*, Trimeprazine tartrate, Cyproheptadine hydrochloride, Azatidine maleate, Astemizole, Loratadine, Cetirizine, Levocetrazine Cromolyn sodium
H2-antagonists: Cimetidine*, Famotidine, Ranitidin.
Gastric Proton pump inhibitors: Omeprazole, Lansoprazole, Rabeprazole, Pantoprazole
Anti-neoplastic agents
Alkylating agents: Meclorethamine*, Cyclophosphamide, Melphalan, Chlorambucil, Busulfan, Thiotepa
Antimetabolites: Mercaptopurine*, Thioguanine, Fluorouracil, Floxuridine, Cytarabine, Methotrexate*, Azathioprine
Antibiotics: Dactinomycin, Daunorubicin, Doxorubicin, Bleomycin
Plant products: Etoposide, Vinblastin sulphate, Vincristin sulphate
Miscellaneous: Cisplatin, Mitotane.

UNIT – II
10 Hrs
Anti-anginal:
Calcium channel blockers: Verapamil, Bepridil hydrochloride, Diltiazem hydrochloride, Nifedipine, Amlodipine, Felodipine, Nicardipine, Nimodipine.
Diuretics:
Carbonic anhydrase inhibitors: Acetazolamide*, Methazolamide, Dichlorphenamid.
Thiazides: Chlorothiazide*, Hydrocholorothiazide, Hydroflumethiazide, Cyclothiazide,
Loop diuretics: Furosemide*, Bumetanide, Ethacrynic acid.
Potassium sparing Diuretics: Spironolactone, Triamterene, Amiloride.
Osmotic Diuretics: Mannitol

Anti-hypertensive Agents: Timolol, Captopril, Lisinopril, Enalapril, Benazepril hydrochloride, Quinapril hydrochloride, Methyl dopate hydrochloride,* Clonidine hydrochloride, Guanethidine monosulphate, Guanabenz acetate, Sodium nitroprusside, Diazoxide, Minoxidil, Reserpine, Hydralazine hydrochloride.

UNIT – III

10 Hrs

Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, isopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcanide hydrochloride, Amiodarone, Sotalol.
Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesterolamine and Cholestipol
Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan.

UNIT – IV

08 Hrs

Drugs acting on Endocrine system
Nomenclature, Stereochemistry and metabolism of steroids
Sex hormones: Testosterone, Nandralone, Progestrones, Oestriol, Oestradiol, Oestrone, Diethyl stilbestrol.

Drugs for erectile dysfunction: Sildenafil, Tadalafil.

Oral contraceptives: Mifepristone, Norgestrel, Levonorgestrel

Corticosteroids: Cortisone, Hydrocortisone, Prednisolone, Betamethasone, Dexamethasone

Thyroid and antithyroid drugs: L-Thyroxine, L-Thyronine, Propylthiouracil, Methimazole.

UNIT – V

07 Hrs

Antidiabetic agents:
Insulin and its preparations
Sulfonyl ureas: Tolbutamide*, Chlorpropamide, Glipizide, Glimepiride.
Biguanides: Metformin.
Thiazolidinediones: Pioglitazone, Rosiglitazone.
Meglitinides: Repaglinide, Nateglinide.
Glucosidase inhibitors: Acrabose, Voglibose.

Local Anesthetics: SAR of Local anesthetics

Benzoic Acid derivatives; Cocaine, Hexylcaine, Methylocaine, Cyclomethycaine, Piperocaine.
Amino Benzoic acid derivatives; Benzocaine*, Butamben, Procaine*, Butacaine, Propoxycaaine, Tetracaine, Benoxinate.
Lidocaine/Anilide derivatives; Lignocaine, Mepivacaine, Prilocaine, Etidocaine.
Miscellaneous: Phenacaine, Diperodon, Dibucaine.*

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.

BP 502T. INDUSTRIAL PHARMACY – I (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: Course enables the student to understand and appreciate the influence of pharmaceutical additives and various pharmaceutical dosage forms on the performance of the drug product.

Objectives: Upon completion of the course the student shall be able to
- Know the various pharmaceutical dosage forms and their manufacturing techniques.
- Know various considerations in development of pharmaceutical dosage forms
- Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality

Course content:

UNIT – I
Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances.

a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism
b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization BCS classification of drugs & its significant

Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.

UNIT – II
Tablets:
Equipment and tablet tooling.
b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating.
c. Quality control tests: In process and finished product tests

Liquid orals: Formulation and manufacturing consideration of syrups and elixirs suspensions and emulsions; Filling and packaging; evaluation of liquid orals official in pharmacopoeia

UNIT – III
Capsules:
b. **Soft gelatin capsules**: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications.

Pellets: Introduction, formulation requirements, pelletization process, equipments for manufacture of pellets

UNIT – IV

Parenteral Products: 10 Hrs

- **a.** Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity
- **b.** Production procedure, production facilities and controls, aseptic processing
- **c.** Formulation of injections, sterile powders, large volume parenterals and lyophilized products.
- **d.** Containers and closures selection, filling and sealing of ampoules, vials and infusion fluids. Quality control tests of parenteral products.

Ophthalmic Preparations: Introduction, formulation considerations; formulation of eye drops, eye ointments and eye lotions; methods of preparation; labeling, containers; evaluation of ophthalmic preparations

UNIT – V

Cosmetics: 10 Hrs

- Formulation and preparation of the following cosmetic preparations: lipsticks, shampoos, cold cream and vanishing cream, tooth pastes, hair dyes and sunscreens.

Pharmaceutical Aerosols: Definition, propellants, containers, valves, types of aerosol systems; formulation and manufacture of aerosols; Evaluation of aerosols; Quality control and stability studies.

Packaging Materials Science: Materials used for packaging of pharmaceutical products, factors influencing choice of containers, legal and official requirements for containers, stability aspects of packaging materials, quality control tests.

BP 506P. INDUSTRIAL PHARMACY – I (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Preformulation studies on paracetamol/asparin/or any other drug
2. Preparation and evaluation of Paracetamol tablets
3. Preparation and evaluation of Aspirin tablets
4. Coating of tablets- film coating of tables/granules
5. Preparation and evaluation of Tetracycline capsules
6. Preparation of Calcium Gluconate injection
7. Preparation of Ascorbic Acid injection
8. Quality control test of (as per IP) marketed tablets and capsules
9. Preparation of Eye drops/ and Eye ointments
10. Preparation of Creams (cold / vanishing cream)
11. Evaluation of Glass containers (as per IP)

Recommended Books: (Latest Editions)
1. Pharmaceutical dosage forms - Tablets, volume 1 -3 by H.A. Liberman, Leon Lachman & J.B.Schwartz
2. Pharmaceutical dosage form - Parenteral medication vol- 1&2 by Liberman & Lachman
3. Pharmaceutical dosage form disperse system VOL-1 by Liberman & Lachman
6. Theory and Practice of Industrial Pharmacy by Liberman & Lachman
7. Pharmaceutics- The science of dosage form design by M.E. Aulton, Churchill livingstone, Latest edition

BP 503T. PHARMACOLOGY – II (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on different systems of body and in addition, emphasis on the basic concepts of bioassay.

Objectives: Upon completion of this course the student should be able to

- Understand the mechanism of drug action and its relevance in the treatment of different diseases
- Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments
- Demonstrate the various receptor actions using isolated tissue preparation
- Appreciate correlation of pharmacology with related medical sciences

Course Content:

UNIT- I
1. Pharmacology of drugs acting on cardio vascular system 10 Hrs
 a. Introduction to hemodynamic and electrophysiology of heart.
 b. Drugs used in congestive heart failure
 c. Anti-hypertensive drugs.
 d. Anti-anginal drugs.
 e. Anti-arrhythmic drugs.
 f. Anti-hyperlipidemic drugs.

UNIT – II
1. Pharmacology of drugs acting on cardio vascular system 10 Hrs
 a. Drug used in the therapy of shock.
 b. Hematinics, coagulants and anticoagulants.
 c. Fibrinolytics and anti-platelet drugs
 d. Plasma volume expanders
2. Pharmacology of drugs acting on urinary system
UNIT – III
3. Autocoids and related drugs
a. Introduction to autocoids and classification
b. Histamine, 5-HT and their antagonists.
c. Prostaglandins, Thromboxanes and Leukotrienes.
d. Angiotensin, Bradykinin and Substance P.
e. Non-steroidal anti-inflammatory agents
f. Anti-gout drugs
g. Antirheumatic drugs

UNIT – IV
5. Pharmacology of drugs acting on endocrine system
a. Basic concepts in endocrine pharmacology.
b. Anterior Pituitary hormones- analogues and their inhibitors.
c. Thyroid hormones- analogues and their inhibitors.
d. Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D.
e. Insulin, Oral Hypoglycemic agents and glucagon.
f. ACTH and corticosteroids.

UNIT – V
5. Pharmacology of drugs acting on endocrine system
a. Androgens and Anabolic steroids.
b. Estrogens, progesterone and oral contraceptives.
c. Drugs acting on the uterus.
6. Bioassay
a. Principles and applications of bioassay.
b. Types of bioassay
c. Bioassay of insulin, oxytocin, vasopressin, ACTH, d-tubocurarine, digitalis, histamine and 5-HT.

BP 507P. PHARMACOLOGY – II (Practical)

End Examination: 35 Marks
Midsem: 15 Marks

1. Introduction to in-vitro pharmacology and physiological salt solutions.
2. Effect of drugs on isolated frog heart.
3. Effect of drugs on blood pressure and heart rate of dog.
4. Study of diuretic activity of drugs using rats/mice.
5. DRC of acetylcholine using frog rectus abdominis muscle.
6. Effect of phystostigmine and atropine on DRC of acetylcholine using frog rectus abdominis muscle and rat ileum respectively.
10. Bioassay of acetylcholine using rat ileum/colon by four point bioassay.
12. Determination of PD2 value using guinea pig ileum.
13. Effect of spasmogens and spasmolytics using rabbit jejunum.
15. Analgesic activity of drug using central and peripheral methods

Note: All laboratory techniques and animal experiments are demonstrated by simulated experiments by softwares and videos

Recommended Books (Latest Editions)
3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
7. Sharma H. L., Sharma K. K., Principles of Pharmacology, Paras medical publisher

BP 504T. PHARMACOGNOSY AND PHYTOCHEMISTRY – II (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: The main purpose of subject is to impart the students the knowledge of how the secondary metabolites are produced in the crude drugs, how to isolate and identify and produce them industrially. Also this subject involves the study of producing the plants and phytochemicals through plant tissue culture, drug interactions and basic principles of traditional system of medicine.

Objectives: Upon completion of the course, the student shall be able
- to know the modern extraction techniques, characterization and identification of the herbal drugs and phytoconstituents
- to understand the preparation and development of herbal formulation.
- to understand the herbal drug interactions
- to carryout isolation and identification of phytoconstituents

Course Content:

UNIT – I
7 Hrs

Metabolic pathways in higher plants and their determination

a) Brief study of basic metabolic pathways and formation of different secondary metabolites through these pathways- Shikimic acid pathway, Acetate pathways and Amino acid pathway.

b) Study of utilization of radioactive isotopes in the investigation of Biogenetic studies.

c) **Introduction to secondary metabolites:**
Definition, classification, properties and test for identification of Alkaloids, Glycosides, Flavonoids, Tannins, Volatile oil and Resins

UNIT – II
General introduction, composition, chemistry & chemical classes, biosources, therapeutic uses and commercial applications of following secondary metabolites:
Alkaloids: Vinca, Rauwolfia, Belladonna, Opium,
Phenylpropanoids and Flavonoids: Lignans, Tea, Ruta
Steroids, Cardiac Glycosides & Triterpenoids: Liquorice, Dioscorea, Digitalis
Volatile oils: Mentha, Clove, Cinnamon, Fennel, Coriander
Tannins: Catechu, Pterocarpus
Resins: Benzoin, Guggul, Ginger, Asafoetida, Myrrh, Colophony
Glycosides: Senna, Aloes, Bitter Almond
Iridoids, Other terpenoids & Naphthaquinones: Gentian, Artemisia, taxus, carotenoids

UNIT – III
Isolation, Identification and Analysis of Phytoconstituents
a) Terpenoids: Menthol, Citral, Artemisin
b) Glycosides: Glycyrhetinic acid & Rutin
c) Alkaloids: Atropine, Quinine, Reserpine, Caffeine
d) Resins: Podophyllotoxin, Curcumin

UNIT – IV
Industrial production, estimation and utilization of the following phytoconstituents: Forskolin, Sennoside, Artemisinin, Diosgenin, Digoxin, Atropine, Podophyllotoxin, Caffeine, Taxol, Vincristine and Vinblastine

UNIT – V
Basics of Phytochemistry
Modern methods of extraction, application of latest techniques like Spectroscopy, chromatography and electrophoresis in the isolation, purification and identification of crude drugs.

BP 508P. PHARMACOGNOSY AND PHYTOCHEMISTRY – II (Practical)

End Examination: 35 Marks
Midsem: 15 Marks

1. Morphology, histology and powder characteristics & extraction & detection of: Cinchona, Cinnamon, Senna, Clove, Ephedra, Fennel and Coriander
2. Exercise involving isolation & detection of active principles
 a. Caffeine - from tea dust.
 b. Diosgenin from Dioscorea
 c. Atropine from Belladonna
 d. Sennosides from Senna
3. Separation of sugars by Paper chromatography
4. TLC of herbal extract
5. Distillation of volatile oils and detection of phytoconstituents by TLC
6. Analysis of crude drugs by chemical tests: (i) Asafoetida (ii) Benzoin (iii) Colophony (iv) Aloes (v) Myrrh
Recommended Books: (Latest Editions)
10. The formulation and preparation of cosmetic, fragrances and flavours.
12. Text Book of Biotechnology by Vyas and Dixit.

BP 505T. PHARMACEUTICAL JURISPRUDENCE (Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: This course is designed to impart basic knowledge on important legislations related to the profession of pharmacy in India.

Objectives: Upon completion of the course, the student shall be able to understand:

- The Pharmaceutical legislations and their implications in the development and marketing of pharmaceuticals.
- Various Indian pharmaceutical Acts and Laws
- The regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- The code of ethics during the pharmaceutical practice

Course Content:

UNIT – I 10 Hrs
Drugs and Cosmetics Act, 1940 and its rules 1945:
Objectives, Definitions, Legal definitions of schedules to the Act and Rules
Import of drugs – Classes of drugs and cosmetics prohibited from import, Import under license or permit. Offences and penalties.
Manufacture of drugs – Prohibition of manufacture and sale of certain drugs.
Conditions for grant of license and conditions of license for manufacture of drugs.
Manufacture of drugs for test, examination and analysis, manufacture of new drug, loan license and repacking license.
UNIT – II
Drugs and Cosmetics Act, 1940 and its rules 1945.
Sale of Drugs – Wholesale, Retail sale and restricted license. Offences and penalties
Labeling & Packing of drugs- General labeling requirements and specimen labels for drugs and cosmetics, List of permitted colors. Offences and penalties.
Administration of the Act and Rules – Drugs Technical Advisory Board, Central drugs Laboratory, Drugs Consultative Committee, Government drug analysts, Licensing authorities, controlling authorities, Drugs Inspectors

UNIT – III
Pharmacy Act –1948: Objectives, Definitions, Pharmacy Council of India; its constitution and functions, Education Regulations, State and Joint state pharmacy councils; constitution and functions, Registration of Pharmacists, Offences and Penalties
Narcotic Drugs and Psychotropic substances Act-1985 and Rules: Objectives, Definitions, Authorities and Officers, Constitution and Functions of narcotic & Psychotropic Consultative Committee, National Fund for Controlling the Drug Abuse, Prohibition, Control and Regulation, opium poppy cultivation and production of poppy straw, manufacture, sale and export of opium, Offences and Penalties

UNIT – IV
Study of Salient Features of Drugs and Magic Remedies Act and its rules: Objectives, Definitions, Prohibition of certain advertisements, Classes of Exempted advertisements, Offences and Penalties
Prevention of Cruelty to animals Act-1960: Objectives, Definitions, Institutional Animal Ethics Committee, CPCSEA guidelines for Breeding and Stocking of Animals, Performance of Experiments, Transfer and acquisition of animals for experiment, Records, Power to suspend or revoke registration, Offences and Penalties
National Pharmaceutical Pricing Authority: Drugs Price Control Order (DPCO)-2013. Objectives, Definitions, Sale prices of bulk drugs, Retail price of formulations, Retail price and ceiling price of scheduled formulations, National List of Essential Medicines (NLEM)

UNIT – V
Pharmaceutical Legislations – A brief review, Introduction, Study of drugs enquiry committee, Health survey and development committee, Hathi committee and Mudaliar committee
Code of Pharmaceutical ethics Definition, Pharmacist in relation to his job, trade, medical profession and his profession, Pharmacist’s oath
Medical Termination of Pregnancy Act
Right to Information Act
Introduction to Intellectual Property Rights (IPR)

Recommended books: (Latest Editions)
1. Forensic Pharmacy by B. Suresh
2. Text book of Forensic Pharmacy by B. M. Mithal
5. Drugs and Cosmetics Act/Rules by Govt. of India publications.
6. Medicinal and Toilet preparations act 1955 by Govt. of India publications.
7. Narcotic drugs and psychotropic substances act by Govt. of India publications
8. Drugs and Magic Remedies act by Govt. of India publication
SEMESTER – VI

BP 601T. MEDICINAL CHEMISTRY – III (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart fundamental knowledge on the structure, chemistry and therapeutic value of drugs. The subject emphasis on modern techniques of rational drug design like quantitative structure activity relationship (QSAR), Prodrug concept, combinatorial chemistry and Computer aided drug design (CADD). The subject also emphasizes on the chemistry, mechanism of action, metabolism, adverse effects, Structure Activity Relationships (SAR), therapeutic uses and synthesis of important drugs.

Objectives: Upon completion of the course student shall be able to
• Understand the importance of drug design and different techniques of drug design.
• Understand the chemistry of drugs with respect to their biological activity.
• Know the metabolism, adverse effects and therapeutic value of drugs.
• Know the importance of SAR of drugs.

Course Content:
Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted by (*).

UNIT – I
10 Hrs
Antibiotics
Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.
β-Lactam antibiotics: Penicillin, Cepholosporins, β- Lactamase inhibitors, Monobactams
Aminoglycosides: Streptomycin, Neomycin, Kanamycin
Tetracyclines: Tetracycline, Oxytetracycline, Chlortetracycline, Minocycline, Doxycycline

UNIT – II
10 Hrs
Antibiotics
Historical background, Nomenclature, Stereochemistry, Structure activity relationship, Chemical degradation classification and important products of the following classes.
Macrolide: Erythromycin Clarithromycin, Azithromycin.
Miscellaneous: Chloramphenicol*, Clindamycin.
Prodrugs: Basic concepts and application of prodrugs design.
Antimalarials: Etiology of malaria.
Quinolines: SAR, Quinine sulphate, Chloroquine*, Amodiaquine, Primaquine phosphate, Pamaquine*, Quinacrine hydrochloride, Mefloquine.
Biguaniides and dihydro triazines: Cycloguanil pamoate, Proguanil.
Miscellaneous: Pyrimethamine, Artesunate, Artemether, Atovoquone.

UNIT – III
10 Hrs
Anti-tubercular Agents
Synthetic anti tubercular agents: Isoniozid*, Ethionamide, Ethambutol, Pyrazinamide, Para amino salicylic acid.*
Anti tubercular antibiotics: Rifampicin, Rifabutin, Cycloserine, Streptomycine, Capreomycin sulphate.

Urinary tract anti-infective agents
Quinolones: SAR of quinolones, Nalidixic Acid, Norfloxacin, Enoxacin, Ciprofloxacin*, Ofloxacin, Lomefloxacin, Sparfloxacina, Gatifloxacina, Moxifloxacin
Miscellaneous: Furazolidine, Nitrofurantoin*, Methanamine.

UNIT – IV
Antifungal agents:
Antifungal antibiotics: Amphotericin-B, Nystatin, Natamycin, Griseofulvin.
Synthetic Antifungal agents: Clotrimazole, Econazole, Butoconazole, Oxiconazole Tioconozola, Miconazole*, Ketoconazole, Terconazole, Itraconazole, Fluconazole, Naftifine hydrochloride, Tolnaftate*.
Sulphonamides and Sulfones
Historical development, chemistry, classification and SAR of Sulfonamides: Sulphamethizole, Sulfisoxazole, Sulphamethazine, Sulfacetamide*, Sulphapyridine, Sulfrathoxazole*, Sulphadiazine, Mefenide acetate, Sulfasalazine.
Folate reductase inhibitors: Trimethoprim*, Cotrimoxazole.
Sulfones: Dapsone*.

UNIT – V
Introduction to Drug Design
Various approaches used in drug design.
Physicochemical parameters used in quantitative structure activity relationship (QSAR) such as partition coefficient, Hammet’s electronic parameter, Taft’s steric parameter and Hansch analysis.
Pharmacophore modeling and docking techniques.
Combinatorial Chemistry: Concept and applications of combinatorial chemistry: solid phase and solution phase synthesis.

BP 607P. MEDICINAL CHEMISTRY – III (Practical)

Hours per week: 4 End Examination: 35 Marks
Credit: 2 Midsem: 15 Marks

I Preparation of drugs and intermediates
- Sulphanilamide
- 7-Hydroxy, 4-methyl coumarin
- Chlorobutanol
- Triphenyl imidazole
- Tolbutamide
- Hexamine
II Assay of drugs
- Isonicotinic acid hydrazide
- Chloroquine
- Metronidazole
- Dapsone
- Chlorpheniramine maleate
- Benzyl penicillin

III Preparation of medicinally important compounds or intermediates by Microwave irradiation technique

IV Drawing structures and reactions using chem draw®

V Determination of physicochemical properties such as logP, clogP, MR, Molecular weight, Hydrogen bond donors and acceptors for class of drugs course content using drug design software Drug likeliness screening (Lipinskies RO5)

Recommended Books (Latest Editions)
2. Foye’s Principles of Medicinal Chemistry.
4. Introduction to principles of drug design- Smith and Williams.
5. Remington’s Pharmaceutical Sciences.
6. Martindale’s extra pharmacopoeia.
9. Indian Pharmacopoeia.

BP 602T. PHARMACOLOGY – III (Theory)

Hours per week: 3L+1T
Credit: 4

End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is intended to impart the fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and contraindications) of drugs acting on respiratory and gastrointestinal system, infectious diseases, immuno-pharmacology and in addition, emphasis on the principles of toxicology and chronopharmacology.

Objectives: Upon completion of this course the student should be able to:
- understand the mechanism of drug action and its relevance in the treatment of different infectious diseases
- comprehend the principles of toxicology and treatment of various poisonings and
- appreciate correlation of pharmacology with related medical sciences.

Course Content:

UNIT – I
1. Pharmacology of drugs acting on Respiratory system
 a. Anti -asthmatic drugs
 b. Drugs used in the management of COPD
c. Expectorants and antitussives
d. Nasal decongestants
e. Respiratory stimulants

2. Pharmacology of drugs acting on the Gastrointestinal Tract
 a. Antiulcer agents.
 b. Drugs for constipation and diarrhoea.
 c. Appetite stimulants and suppressants.
 d. Digestants and carminatives.
 e. Emetics and anti-emetics.

UNIT – II 10 Hrs
3. Chemotherapy
 a. General principles of chemotherapy.
 b. Sulfonamides and cotrimoxazole.
 c. Antibiotics- Penicillins, cephalosporins, chloramphenicol, macrolides, quinolones and fluoroquinolins, tetracycline and aminoglycosides

UNIT – III 10 Hrs
3. Chemotherapy
 a. Antitubercular agents
 b. Antileprotic agents
 c. Antifungal agents
 d. Antiviral drugs
 e. Anthelmintics
 f. Antimalarial drugs
 g. Antiamoebic agents

UNIT – IV 08 Hrs
3. Chemotherapy
 l. Urinary tract infections and sexually transmitted diseases.
 m. Chemotherapy of malignancy.

4. Immunopharmacology
 a. Immunostimulants
 b. Immunosuppressant
 Protein drugs, monoclonal antibodies, target drugs to antigen, biosimilars

UNIT – V 07 Hrs
5. Principles of toxicology
 a. Definition and basic knowledge of acute, subacute and chronic toxicity.
 b. Definition and basic knowledge of genotoxicity, carcinogenicity, teratogenicity and mutagenicity
 c. General principles of treatment of poisoning
 d. Clinical symptoms and management of barbiturates, morphine, organophosphorus compound and lead, mercury and arsenic poisoning.

6. Chronopharmacology
 a. Definition of rhythm and cycles.
 b. Biological clock and their significance leading to chronotherapy.
BP 608P. PHARMACOLOGY – III (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Dose calculation in pharmacological experiments
2. Antiallergic activity by mast cell stabilization assay
4. Study of effect of drugs on gastrointestinal motility
5. Effect of agonist and antagonists on guinea pig ileum
6. Estimation of serum biochemical parameters by using semi-autoanalyser
7. Effect of saline purgative on frog intestine
8. Insulin hypoglycemic effect in rabbit
9. Test for pyrogens (rabbit method)
10. Determination of acute oral toxicity (LD50) of a drug from a given data
11. Determination of acute skin irritation/corrosion of a test substance
12. Determination of acute eye irritation/corrosion of a test substance
13. Calculation of pharmacokinetic parameters from a given data
14. Biostatistics methods in experimental pharmacology (student’s t test, ANOVA)
15. Biostatistics methods in experimental pharmacology (Chi square test, Wilcoxon Signed Rank test)

*Experiments are demonstrated by simulated experiments/videos

Recommended Books (Latest Editions)
3. Goodman and Gilman’s, The Pharmacological Basis of Therapeutics
5. Mycek M.J, Gelnet S.B and Perper M.M. Lippincott’s Illustrated Reviews- Pharmacology
9. Kulkarni SK. Handbook of experimental pharmacology. VallabhPrakashan,

BP 603T. HERBAL DRUG TECHNOLOGY (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject gives the student the knowledge of basic understanding of herbal drug industry, the quality of raw material, guidelines for quality of herbal drugs, herbal cosmetics, natural sweeteners, nutraceutical etc. The subject also emphasizes on Good Manufacturing Practices (GMP), patenting and regulatory issues of herbal drugs
Objectives: Upon completion of this course the student should be able to:

- understand raw material as source of herbal drugs from cultivation to herbal drug product
- know the WHO and ICH guidelines for evaluation of herbal drugs
- know the herbal cosmetics, natural sweeteners, nutraceuticals
- appreciate patenting of herbal drugs, GMP.

Course content:

UNIT – I
Herbs as raw materials
Definition of herb, herbal medicine, herbal medicinal product, herbal drug preparation
Source of Herbs, Selection, identification and authentication of herbal materials
Processing of herbal raw material

Biodynamic Agriculture
Good agricultural practices in cultivation of medicinal plants including Organic farming.
Pest and Pest management in medicinal plants: Biopesticides/Bioinsecticides.

Indian Systems of Medicine
a) Basic principles involved in Ayurveda, Siddha, Unani and Homeopathy
b) Preparation and standardization of Ayurvedic formulations viz Aristas and Asawas, Ghutika, Churna, Lehya and Bhasma.

UNIT – II
Nutraceuticals
General aspects, Market, growth, scope and types of products available in the market. Health benefits and role of Nutraceuticals in ailments like Diabetes, CVS diseases, Cancer, Irritable bowel syndrome and various Gastro intestinal diseases.
Study of following herbs as health food: Alfalfa, Chicory, Ginger, Fenugreek, Garlic, Honey, Amla, Ginseng, Ashwagandha, Spirulina

Herbal-Drug and Herb-Food Interactions:
General introduction to interaction and classification. Study of following drugs and their possible side effects and interactions: Hypercium, kava-kava, Ginkobiloba, Ginseng, Garlic, Pepper & Ephedra.

UNIT – III
Herbal Cosmetics:
Sources and description of raw materials of herbal origin used via, fixed oils, waxes, gums colours, perfumes, protective agents, bleaching agents, antioxidants in products such as skin care, hair care and oral hygiene products.

Herbal excipients:
Herbal Excipients – Significance of substances of natural origin as excipients – colorants, sweeteners, binders, diluents, viscosity builders, disintegrants, flavors & perfumes.

Herbal formulations:
Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosomes.

UNIT – IV
Evaluation of Drugs
WHO & ICH guidelines for the assessment of herbal drugs, Stability testing of herbal drugs.
Patenting and Regulatory requirements of natural products:
a) Definition of the terms: Patent, IPR, Farmers right, Breeder’s right, Bioprospecting and Biopiracy
b) Patenting aspects of Traditional Knowledge and Natural Products. Case study of Curcuma & Neem.

UNIT – V

General Introduction to Herbal Industry
Herbal drugs industry: Present scope and future prospects.
A brief account of plant based industries and institutions involved in work on medicinal and aromatic plants in India.

Schedule T – Good Manufacturing Practice of Indian systems of medicine
Components of GMP (Schedule – T) and its objectives
Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.

BP 609P. HERBAL DRUG TECHNOLOGY (Practical)

Hours per week: 4 End Examination: 35 Marks
Credit: 2 Midsem: 15 Marks

1. To perform preliminary phytochemical screening of crude drugs.
2. Determination of the alcohol content of Asava and Arista
3. Evaluation of excipients of natural origin
4. Incorporation of prepared and standardized extract in cosmetic formulations like creams, lotions and shampoos and their evaluation.
5. Incorporation of prepared and standardized extract in formulations like syrups, mixtures and tablets and their evaluation as per Pharmacopoeial requirements.
6. Monograph analysis of herbal drugs from recent Pharmacopoeias
7. Determination of Aldehyde content
8. Determination of Phenol content
9. Determination of total alkaloids

Recommended Books: (Latest Editions)
1. Textbook of Pharmacognosy by Trease & Evans.
2. Textbook of Pharmacognosy by Tyler, Brady & Robber.
3. Pharmacognosy by Kokate, Purohit and Gokhale
4. Essential of Pharmacognosy by Dr. S. H. Ansari
5. Pharmacognosy & Phytochemistry by V. D. Rangari
6. Pharmacopoeal standards for Ayurvedic Formulation (Council of Research in Indian Medicine & Homeopathy)
BP 604T. BIOPHARMACEUTICS AND PHARMACOKINETICS (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart knowledge and skills of biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen and in solving the problems arised therein.

Objectives: Upon completion of the course student shall be able to:
- Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
- Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
- To understand the concepts of bioavailability and bioequivalence of drug products and their significance.
- Understand various pharmacokinetic parameters, their significance & applications.

Course Content:

UNIT – I
Introduction to Biopharmaceutics
Absorption: Mechanisms of drug absorption through GIT, factors influencing drug absorption though GIT, absorption of drug from Non per oral extra-vascular routes.

UNIT – II

UNIT – III
Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non renal routes of drug excretion of drugs.

UNIT – IV
Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non compartment models, physiological models, One compartment open model.
(a) Intravenous Injection (Bolus) (b) Intravenous infusion and (c) Extra vascular administrations. Pharmacokinetics parameters - K_{E}, $t_{1/2}$, V_d, AUC, K_a, C_l and CL_R- definitions methods of eliminations, understanding of their significance and Application.
Multicompartment models: Two compartment open model. IV bolus Kinetics of multiple dosing, steady state drug levels, calculation of loading and maintenance doses and their significance in clinical settings.

UNIT – V
Bioavailability and Bioequivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, in-vitro drug dissolution models, in-vitro-in-vivo correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

Recommended Books: (Latest Editions)
1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
2. Biopharmaceutics and Pharmacokinetics; by Robert F Notari
5. Pharmacokinetics: byMilo Gibaldi Donald, R. Mercel Dekker Inc.
6. Hand Book of Clinical Pharmacokinetics, ByMilo Gibaldi and Laurie Prescott by ADIS Health Science Press.
7. Biopharmaceutics; By Swarbrick

BP 605T. PHARMACEUTICAL BIOTECHNOLOGY (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope:
- Biotechnology has a long promise to revolutionize the biological sciences and technology.
- Scientific application of biotechnology in the field of genetic engineering.
- Medicine and fermentation technology makes the subject interesting.
- Biotechnology is leading to new biological revolutions in diagnosis, prevention and cure of diseases, new and cheaper pharmaceutical drugs.
- Biotechnology has already produced transgenic crops and animals and the future promises lot more.
- It is basically a research-based subject.

Objectives: Upon completion of the subject student shall be able to;
- Understanding the importance of Immobilized enzymes in Pharmaceutical Industries
- Genetic engineering applications in relation to production of pharmaceuticals
- Importance of Monoclonal antibodies in Industries
- Appreciate the use of microorganisms in fermentation technology

UNIT – I
10 Hrs
a) Brief introduction to Biotechnology with reference to Pharmaceutical Sciences.
b) Enzyme Biotechnology- Methods of enzyme immobilization and applications.
c) Biosensors - Working and applications of biosensors in Pharmaceutical Industries.
d) Brief introduction to Protein Engineering.
e) Use of microbes in industry. Production of Enzymes - General consideration -Amylase, Catalase, Peroxidase, Lipase, Protease, Penicillinase.
f) Basic principles of genetic engineering.

UNIT – II 10 Hrs
a) Study of cloning vectors, restriction endonucleases and DNA ligase.
b) Recombinant DNA technology. Application of genetic engineering in medicine.
c) Application of r DNA technology and genetic engineering in the production of:
 i) Interferon ii) Vaccines- hepatitis-B iii) Hormones-Insulin.
d) Brief introduction to PCR

UNIT – III 10 Hrs
Types of immunity- humoral immunity, cellular immunity
a) Structure of Immunoglobulins
b) Structure and Function of MHC
c) Hypersensitivity reactions, Immune stimulation and Immune suppressions.
d) General method of the preparation of bacterial vaccines, toxoids, viral vaccine, antitoxins,
serum-immune blood derivatives and other products relative to immunity.
e) Storage conditions and stability of official vaccines
f) Hybridoma technology- Production, Purification and Applications
g) Blood products and Plasma Substituties.

UNIT – IV 08 Hrs
a) Immuno blotting techniques- ELISA, Western blotting, Southern blotting.
b) Genetic organization of Eukaryotes and Prokaryotes
c) Microbial genetics including transformation, transduction, conjugation, plasmids and
transposons.
d) Introduction to Microbial biotransformation and applications.
e) Mutation: Types of mutation/mutants.

UNIT – V 07 Hrs
a) Fermentation methods and general requirements, study of media, equipments, sterilization
methods, aeration process, stirring.
b) Large scale production fermenter design and its various controls.
c) Study of the production of - penicillins, citric acid, Vitamin B12, Glutamic acid,
Griseofulvin,
d) Blood Products: Collection, Processing and Storage of whole human blood, dried human
plasma, plasma substituties.

Recommended Books (Latest Editions):
1. B.R. Glick and J.J. Pasternak: Molecular Biotechnology: Principles and Applications of
 Recombinant DNA: ASM Press Washington D.C.
2. RA Goldshy et. al.; Kuby Immunology.
4. J.M. Walker and E.B. Gingold: Molecular Biology and Biotechnology by Royal Society of
 Chemistry.
BP 606T. PHARMACEUTICAL QUALITY ASSURANCE (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This course deals with the various aspects of quality control and quality assurance aspects of pharmaceutical industries. It deals with the important aspects like cGMP, QC tests, documentation, quality certifications and regulatory affairs.

Objectives: Upon completion of the course student shall be able to:
- understand the cGMP aspects in a pharmaceutical industry
- appreciate the importance of documentation
- understand the scope of quality certifications applicable to pharmaceutical industries
- understand the responsibilities of QA & QC departments

Course content:

UNIT – I

Quality Assurance and Quality Management concepts: Definition and concept of Quality control, Quality assurance and GMP
Total Quality Management (TQM): Definition, elements, philosophies
ICH Guidelines: purpose, participants, process of harmonization, Brief overview of QSEM, with special emphasis on Q-series guidelines, ICH stability testing guidelines
Quality by design (QbD): Definition, overview, elements of QbD programme, tools
ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration
NABL accreditation: Principles and procedures

UNIT – II

Organization and personnel: Personnel responsibilities, training, hygiene and personal records.
Premises: Design, construction and plant layout, maintenance, sanitation, environmental control, utilities and maintenance of sterile areas, control of contamination.

UNIT – III

Quality Control: Quality control test for containers, rubber closures and secondary packing materials.

UNIT – IV

Complaints: Complaints and evaluation of complaints, Handling of return good, recalling and waste disposal.
Document maintenance in pharmaceutical industry: Batch Formula Record, Master Formula Record, SOP, Quality audit, Quality Review and Quality documentation, Reports and documents, distribution records.

UNIT – V 07 Hrs
Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Warehousing: Good warehousing practice, materials management

Recommended Books: (Latest Editions)
4. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh
5. How to Practice GMP’s – P P Sharma.
6. ISO 9000 and Total Quality Management – Sadhank G Ghosh
7. The International Pharmacopoeia – Vol I, II, III, IV- General Methods of Analysis and Quality specification for Pharmaceutical Substances, Excipients and Dosage forms
8. Good laboratory Practices – Marcel Deckker Series
9. ICH guidelines, ISO 9000 and 14000 guidelines
SEMESTER - VII

BP 701T. INSTRUMENTAL METHODS OF ANALYSIS (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart a fundamental knowledge on the principles and instrumentation of spectroscopic and chromatographic technique. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to

- Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis
- Understand the chromatographic separation and analysis of drugs.
- Perform quantitative & qualitative analysis of drugs using various analytical instruments.

Course Content:

UNIT – I 10 Hrs
UV Visible spectroscopy
Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert’s law, Derivation and deviations.
Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors - Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode.
Applications - Spectrophotometric titrations, Single component and multi component analysis

Fluorimetry
Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications

UNIT – II 10 Hrs
IR spectroscopy
Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations
Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications
Flame Photometry - Principle, interferences, instrumentation and applications
Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications
Nepheloturbidometry - Principle, instrumentation and applications

UNIT – III 10 Hrs
Introduction to chromatography
Adsorption and partition column chromatography - Methodology, advantages, disadvantages and applications.
Thin layer chromatography - Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications. Brief discussion on HPTLC
Paper chromatography - Introduction, methodology, development techniques, advantages, disadvantages and applications
Electrophoresis – Introduction, factors affecting electrophoretic mobility, Techniques of paper, gel, capillary electrophoresis, applications

UNIT – IV
08 Hrs
Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications
High performance liquid chromatography (HPLC) - Introduction, theory, instrumentation, advantages and applications.

UNIT – V
07 Hrs
Ion exchange chromatography - Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications
Gel chromatography - Introduction, theory, instrumentation and applications
Affinity chromatography - Introduction, theory, instrumentation and applications

BP 705P. INSTRUMENTAL METHODS OF ANALYSIS (Practical)

Hours per week: 4
Credit: 2
End Examination: 35 Marks
Midsem: 15 Marks

1. Determination of absorption maxima and effect of solvents on absorption maxima of organic compounds
2. Estimation of dextrose by colorimetry
3. Estimation of sulfanilamide by colorimetry
4. Simultaneous estimation of ibuprofen and paracetamol by UV spectroscopy
5. Assay of paracetamol by UV- Spectrophotometry
6. Estimation of quinine sulfate by fluorimetry
7. Study of quenching of fluorescence
8. Determination of sodium by flame photometry
9. Determination of potassium by flame photometry
10. Determination of chlorides and sulphates by nephelo turbidimetry
11. Separation of amino acids by paper chromatography
12. Separation of sugars by thin layer chromatography
13. Separation of plant pigments by column chromatography
14. Demonstration experiment on HPLC
15. Demonstration experiment on Gas Chromatography

Recommended Books (Latest Editions)
1. Instrumental Methods of Chemical Analysis by B. K. Sharma
2. Organic spectroscopy by Y. R. Sharma
3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A. I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J. B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein
BP 702T. INDUSTRIAL PHARMACY – II (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Scope: This course is designed to impart fundamental knowledge on pharmaceutical product development and translation from laboratory to market

Objectives: Upon completion of the course, the student shall be able to:
- Know the process of pilot plant and scale up of pharmaceutical dosage forms
- Understand the process of technology transfer from lab scale to commercial batch
- Know different Laws and Acts that regulate pharmaceutical industry
- Understand the approval process and regulatory requirements for drug products

Course Content:

UNIT- I 10 Hrs
Pilot plant scale up techniques: General considerations - including significance of personnel requirements, space requirements, raw materials, Pilot plant scale up considerations for solids, liquid orals, semi solids and relevant documentation, SUPAC guidelines, Introduction to platform technology

UNIT- II 10 Hrs
Technology development and transfer: WHO guidelines for Technology Transfer(TT): Terminology, Technology transfer protocol, Quality risk management, Transfer from R & D to production (Process, packaging and cleaning), Granularity of TT Process (API, excipients, finished products, packaging materials) Documentation, Premises and equipments, qualification and validation, quality control, analytical method transfer, Approved regulatory bodies and agencies, Commercialization - practical aspects and problems (case studies), TT agencies in India - APCTD, NRDC, TIFAC, BCIL, TBSE / SIDBI; TT related documentation - confidentiality agreement, licensing, MoUs, legal issues.

UNIT – III 10 Hrs
Regulatory affairs: Introduction, Historical overview of Regulatory Affairs, Regulatory authorities, Role of Regulatory affairs department, Responsibility of Regulatory Affairs Professionals

UNIT – IV 08 Hrs
Quality management systems: Quality management & Certifications: Concept of Quality, Total Quality Management, Quality by Design (QbD), Six Sigma concept, Out of Specifications (OOS), Change control, Introduction to ISO 9000 series of quality systems standards, ISO 14000, NABL, GLP

UNIT – V 07 Hrs
Indian Regulatory Requirements: Central Drug Standard Control Organization (CDSCO)
and State Licensing Authority: Organization, Responsibilities, Certificate of Pharmaceutical Product (COPP), Regulatory requirements and approval procedures for New Drugs.

Recommended Books: (Latest Editions)

BP 703T. PHARMACY PRACTICE (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug information, and therapeutic drug monitoring for improved patient care. In community pharmacy, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling for improved patient care in the community set up.

Objectives: Upon completion of the course, the student shall be able to
- know various drug distribution methods in a hospital
- appreciate the pharmacy stores management and inventory control
- monitor drug therapy of patient through medication chart review and clinical review
- obtain medication history interview and counsel the patients
- identify drug related problems
- detect and assess adverse drug reactions
- interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states
- know pharmaceutical care services
- do patient counselling in community pharmacy;
- appreciate the concept of rational drug therapy.

Course Content:

UNIT – I
10 Hrs

a) Hospital and it’s organization Definition, Classification of hospital- Primary, Secondary and Tertiary hospitals, Classification based on clinical and non-clinical basis, Organization Structure of a Hospital, and Medical staffs involved in the hospital and their functions.

b) Hospital pharmacy and its organization
Definition, functions of hospital pharmacy, Organization structure, Location, Layout and staff requirements, and Responsibilities and functions of hospital pharmacists.

c) Adverse drug reaction
Classifications - Excessive pharmacological effects, secondary pharmacological effects, idiosyncrasy, allergic drug reactions, genetically determined toxicity, toxicity following sudden withdrawal of drugs, Drug interaction- beneficial interactions, adverse interactions, and pharmacokinetic drug interactions, Methods for detecting drug interactions, spontaneous
case reports and record linkage studies, and Adverse drug reaction reporting and management.

d) Community Pharmacy
Organization and structure of retail and wholesale drug store, types and design, Legal requirements for establishment and maintenance of a drug store, Dispensing of proprietary products, maintenance of records of retail and wholesale drug store.

UNIT – II 10 Hrs
a) Drug distribution system in a hospital
Dispensing of drugs to inpatients, types of drug distribution systems, charging policy and labelling, Dispensing of drugs to ambulatory patients, and Dispensing of controlled drugs.

b) Hospital Formulary
Definition, contents of hospital formulary, Differentiation of hospital formulary and Drug list, preparation and revision, and addition and deletion of drug from hospital formulary.

c) Therapeutic Drug Monitoring
Need for Therapeutic Drug Monitoring, Factors to be considered during the Therapeutic Drug Monitoring, and Indian scenario for Therapeutic Drug Monitoring.

d) Medication adherence
Causes of medication non-adherence, pharmacist role in the medication adherence, and monitoring of patient medication adherence.

e) Patient medication history interview
Need for the patient medication history interview, medication interview forms.

f) Community pharmacy management
Financial, materials, staff, and infrastructure requirements.

UNIT – III 10 Hrs
a) Pharmacy and Therapeutic Committee
Organization, functions, Policies of the pharmacy and therapeutic committee in including drugs into formulary, inpatient and outpatient prescription, automatic stop order, and emergency drug list preparation.

b) Drug information services
Drug and Poison information centre, Sources of drug information, Computerised services, and storage and retrieval of information.

c) Patient counseling
Definition of patient counseling; steps involved in patient counseling, and Special cases that require the pharmacist

d) Education and training programme in the hospital
Role of pharmacist in the education and training programme, Internal and external training programme, Services to the nursing homes/clinics, Code of ethics for community pharmacy, and Role of pharmacist in the interdepartmental communication and community health education.

e) Prescribed medication order and communication skills
Prescribed medication order- interpretation and legal requirements, and Communication skills- communication with prescribers and patients.

UNIT – IV 8 Hrs
a) Budget preparation and implementation
Budget preparation and implementation
b) Clinical Pharmacy
Introduction to Clinical Pharmacy, Concept of clinical pharmacy, functions and responsibilities of clinical pharmacist, Drug therapy monitoring - medication chart review, clinical review, pharmacist intervention, Ward round participation, Medication history and Pharmaceutical care. Dosing pattern and drug therapy based on Pharmacokinetic & disease pattern.

C) Over the counter (OTC) sales
Introduction and sale of over the counter and rational use of common over the counter medications.

UNIT – V
7 Hrs

a) Drug store management and inventory control
Organisation of drug store, types of materials stocked and storage conditions, Purchase and inventory control: principles, purchase procedure, purchase order, procurement and stocking, Economic order quantity, Reorder quantity level, and Methods used for the analysis of the drug expenditure

b) Investigational use of drugs
Description, principles involved, classification, control, identification, role of hospital pharmacist, advisory committee.

c) Interpretation of Clinical Laboratory Tests
Blood chemistry, hematology, and urinalysis

Recommended Books (Latest Editions):

Journals:
1. Therapeutic drug monitoring. ISSN: 0163-4356
2. Journal of pharmacy practice. ISSN: 0974-8326
3. American journal of health system pharmacy. ISSN: 1535-2900
4. Pharmacy times

BP 704T. NOVEL DRUG DELIVERY SYSTEMS (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart basic knowledge on the area of novel drug delivery systems.

Objectives: Upon completion of the course student shall be able
To understand various approaches for development of novel drug delivery systems.
To understand the criteria for selection of drugs and polymers for the development of Novel drug delivery systems, their formulation and evaluation

Course content:

UNIT- I 10 Hrs
Controlled drug delivery systems: Introduction, terminology/definitions and rationale, advantages, disadvantages, selection of drug candidates. Approaches to design controlled release formulations based on diffusion, dissolution and ion exchange principles.
Physicochemical and biological properties of drugs relevant to controlled release formulations
Polymers: Introduction, classification, properties, advantages and application of polymers in formulation of controlled release drug delivery systems.

UNIT - II 10 Hrs
Microencapsulation: Definition, advantages and disadvantages, microcapsules, microparticles, methods of microencapsulation, applications
Mucosal Drug Delivery system: Introduction, Principles of bioadhesion /mucoadhesion, concepts, advantages and disadvantages, transmucosal permeability and formulation considerations of buccal delivery systems
Implantable Drug Delivery Systems: Introduction, advantages and disadvantages, concept of implants and osmotic pump

UNIT – III 10 Hrs
Transdermal Drug Delivery Systems: Introduction, Permeation through skin, factors affecting permeation, permeation enhancers, basic components of TDDS, formulation approaches
Gastroretentive drug delivery systems: Introduction, advantages, disadvantages, approaches for GRDDS – Floating, high density systems, inflatable and gastroadhesive systems and their applications
Nasopulmonary drug delivery system: Introduction to Nasal and Pulmonary routes of drug delivery, Formulation of Inhalers (dry powder and metered dose), nasal sprays, nebulizers

UNIT – IV 08 Hrs
Targeted drug Delivery: Concepts and approaches advantages and disadvantages, introduction to liposomes, niosomes, nanoparticles, monoclonal antibodies and their applications

UNIT – V 07 Hrs
Ocular Drug Delivery Systems: Introduction, intraocular barriers and methods to overcome –Preliminary study, ocular formulations and ocuserts
Intrauterine Drug Delivery Systems: Introduction, advantages and disadvantages, development of intra uterine devices (IUDs) and applications

Recommended Books: (Latest Editions)

Journals
1. Indian Journal of Pharmaceutical Sciences (IPA)
2. Indian Drugs (IDMA)
3. Journal of Controlled Release (Elsevier Sciences)
4. Drug Development and Industrial Pharmacy (Marcel & Decker)
5. International Journal of Pharmaceutics (Elsevier Sciences)
SEMESTER – VIII

BP 801T. BIOSTATISTICS AND RESEARCH METHODOLOGY (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: To understand the applications of Biostatics in Pharmacy. This subject deals with descriptive statistics, Graphics, Correlation, Regression, logistic regression Probability theory, Sampling technique, Parametric tests, Non Parametric tests, ANOVA, Introduction to Design of Experiments, Phases of Clinical trials and Observational and Experimental studies, SPSS, R and MINITAB statistical software’s, analyzing the statistical data using Excel.

Objectives: Upon completion of the course the student shall be able to
• Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment)
• Know the various statistical techniques to solve statistical problems
• Appreciate statistical techniques in solving the problems.

Course content:

UNIT – I

10 Hrs
Introduction: Statistics, Biostatistics, Frequency distribution
Measures of central tendency: Mean, Median, Mode- Pharmaceutical examples
Measures of dispersion: Dispersion, Range, standard deviation, Pharmaceutical problems
Correlation: Definition, Karl Pearson’s coefficient of correlation, Multiple correlation - Pharmaceuticals examples

UNIT – II

10 Hrs
Regression: Curve fitting by the method of least squares, fitting the lines $y = a + bx$ and $x = a + by$, Multiple regression, standard error of regression – Pharmaceutical Examples
Probability: Definition of probability, Binomial distribution, Normal distribution, Poisson’s distribution, properties - problems
Sample, Population, large sample, small sample, Null hypothesis, alternative hypothesis, sampling, essence of sampling, types of sampling, Error-I type, Error-II type, Standard error of mean (SEM) - Pharmaceutical examples
Parametric test: t-test (Sample, Pooled or Unpaired and Paired) , ANOVA, (One way and Two way), Least Significance difference

UNIT – III

10 Hrs
Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis test, Friedman Test
Introduction to Research: Need for research, Need for design of Experiments, Experiential Design Technique, plagiarism
Graphs: Histogram, Pie chart, Cubic graph, Response surface plot, Contour plot graph
Designing the methodology: Sample size determination and Power of a study, Report writing and presentation of data, Protocol, Cohort studies, Observational studies, Experimental studies, Designing clinical trial, various phases.
UNIT – IV 08 Hrs
Blocking and confounding system for Two-level factorials

Regression modeling: Hypothesis testing in Simple and Multiple regression models

Introduction to Practical components of Industrial and Clinical Trials Problems: Statistical Analysis Using Excel, SPSS, MINITAB®, DESIGN OF EXPERIMENTS, R - Online Statistical Software’s to Industrial and Clinical trial approach

UNIT – V 07 Hrs

Design and Analysis of experiments:

Factorial Design: Definition, 2^2, 2^3 design. Advantage of factorial design

Response Surface methodology: Central composite design, Historical design, Optimization Techniques

Recommended Books (Latest Editions):
3. Design and Analysis of Experiments – PHI Learning Private Limited, R. Pannerselvam,

BP 802T. SOCIAL AND PREVENTIVE PHARMACY

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: The purpose of this course is to introduce to students a number of health issues and their challenges. This course also introduced a number of national health programmes. The roles of the pharmacist in these contexts are also discussed.

Objectives:
- After the successful completion of this course, the student shall be able to:
- Acquire high consciousness/realization of current issues related to health and pharmaceutical problems within the country and worldwide.
- Have a critical way of thinking based on current healthcare development.
- Evaluate alternative ways of solving problems related to health and pharmaceutical issues

Course content:

UNIT – I 10 Hrs

Concept of health and disease: Definition, concepts and evaluation of public health. Understanding the concept of prevention and control of disease, social causes of diseases and social problems of the sick.

Social and health education: Food in relation to nutrition and health, Balanced diet, Nutritional deficiencies, Vitamin deficiencies, Malnutrition and its prevention.

Sociology and health: Socio cultural factors related to health and disease, Impact of urbanization on health and disease, Poverty and health

Hygiene and health: personal hygiene and health care; avoidable habits
UNIT – II

Preventive medicine: General principles of prevention and control of diseases such as cholera, SARS, Ebola virus, influenza, acute respiratory infections, malaria, chicken guinea, dengue, lymphatic filariasis, pneumonia, hypertension, diabetes mellitus, cancer, drug addiction-drug substance abuse

UNIT – III

National health programmes, its objectives, functioning and outcome of the following:

UNIT – IV

National health intervention programme for mother and child, National family welfare programme, National tobacco control programme, National Malaria Prevention Program, National programme for the health care for the elderly, Social health programme; role of WHO in Indian national program

UNIT – V

Community services in rural, urban and school health: Functions of PHC, Improvement in rural sanitation, national urban health mission, Health promotion and education in school.

Recommended Books (Latest Editions):
6. Community Pharmacy Practice, Ramesh Adepu, BSP publishers, Hyderabad

Recommended Journals:
Research in Social and Administrative Pharmacy, Elsevier, Ireland

BP 803ET. PHARMA MARKETING MANAGEMENT (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks
Scope:
The pharmaceutical industry not only needs highly qualified researchers, chemists and, technical people, but also requires skilled managers who can take the industry forward by
managing and taking the complex decisions which are imperative for the growth of the industry. The Knowledge and Know-how of marketing management groom the people for taking a challenging role in Sales and Product management.

Objective: The course aims to provide an understanding of marketing concepts and techniques and their applications in the pharmaceutical industry.

Course content:

UNIT – I 10 Hrs
Marketing:
Definition, general concepts and scope of marketing; Distinction between marketing & selling; Marketing environment; Industry and competitive analysis; Analyzing consumer buying behavior; industrial buying behavior.
Pharmaceutical market:
Quantitative and qualitative aspects; size and composition of the market; demographic descriptions and socio-psychological characteristics of the consumer; market segmentation & targeting.Consumer profile; Motivation and prescribing habits of the physician; patients’ choice of physician and retail pharmacist.Analyzing the Market; Role of market research.

UNIT – II 09 Hrs
Product decision:
Classification, product line and product mix decisions, product life cycle, product portfolio analysis; product positioning; new product decisions; product branding, packaging and labeling decisions, product management in pharmaceutical industry.

UNIT – III 07 Hrs
Promotion:
Methods, determinants of promotional mix, promotional budget; An overview of personal selling, advertising, direct mail, journals, sampling, retailing, medical exhibition, public relations, online promotional techniques for OTC Products.

UNIT – IV 10 Hrs
Pharmaceutical marketing channels:
Designing channel, channel members, selecting the appropriate channel, conflict in channels, physical distribution management: Strategic importance, tasks in physical distribution management.
Professional sales representative (PSR):
Duties of PSR, purpose of detailing, selection and training, supervising, norms for customer calls, motivating, evaluating, compensation and future prospects of the PSR.

UNIT – V 09 Hrs
Pricing:
Meaning, importance, objectives, determinants of price; pricing methods and strategies, issues in price management in pharmaceutical industry. An overview of DPCO (Drug Price Control Order) and NPPA (National Pharmaceutical Pricing Authority).
Emerging concepts in marketing:
Vertical & Horizontal Marketing; Rural Marketing; Consumerism; Industrial Marketing; Global Marketing.
Recommended Books: (Latest Editions)

BP 804ET. PHARMACEUTICAL REGULATORY SCIENCE (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Scope: This course is designed to impart the fundamental knowledge on the regulatory requirements for approval of new drugs, and drug products in regulated markets of India & other countries like US, EU, Japan, Australia, UK etc. It prepares the students to learn in detail on the regulatory requirements, documentation requirements, and registration procedures for marketing the drug products.

Objectives: Upon completion of the subject student shall be able to;
- Know about the process of drug discovery and development
- Know the regulatory authorities and agencies governing the manufacture and sale of pharmaceuticals
- Know the regulatory approval process and their registration in Indian and international markets

Course content:

UNIT – I
New Drug Discovery and development
Stages of drug discovery, Drug development process, pre-clinical studies, non-clinical activities, clinical studies, Innovator and generics, Concept of generics, Generic drug product development.

UNIT – II
Regulatory Approval Process
Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA.

Regulatory authorities and agencies
Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications)
UNIT – III
Registration of Indian drug product in overseas market
10 Hrs

UNIT – IV
Clinical trials
08 Hrs

UNIT – V
Regulatory Concepts
07 Hrs

Recommended books (Latest Editions):
1. Drug Regulatory Affairs by Sachin Itkar, Dr. N.S. Vyawahare, Niral Prakashan.
9. Drugs: From Discovery to Approval, 2nd edition by Rick Ng

BP 805ET. PHARMACOVIGILANCE (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Scope: This paper will provide an opportunity for the student to learn about development of pharmacovigilance as a science, basic terminologies used in pharmacovigilance, global scenario of Pharmacovigilance, train students on establishing pharmacovigilance programme in an organization, various methods that can be used to generate safety data and signal detection. This paper also develops the skills of classifying drugs, diseases and adverse drug reactions.

Objectives:
At completion of this paper it is expected that students will be able to (know, do, and appreciate):
• Why drug safety monitoring is important?
• History and development of pharmacovigilance
• National and international scenario of pharmacovigilance
• Dictionaries, coding and terminologies used in pharmacovigilance
• Detection of new adverse drug reactions and their assessment
• International standards for classification of diseases and drugs
• Adverse drug reaction reporting systems and communication in pharmacovigilance
• Methods to generate safety data during pre clinical, clinical and post approval phases of drugs’ life cycle
• Drug safety evaluation in paediatrics, geriatrics, pregnancy and lactation
• Pharmacovigilance Programme of India (PvPI) requirement for ADR reporting in India
• ICH guidelines for ICSR, PSUR, expedited reporting, pharmacovigilance planning
• CIOMS requirements for ADR reporting
• Writing case narratives of adverse events and their quality.

Course Content:

UNIT – I 10 Hrs

Introduction to Pharmacovigilance
• History and development of Pharmacovigilance
• Importance of safety monitoring of Medicine
• WHO international drug monitoring programme
• Pharmacovigilance Programme of India (PvPI)

Introduction to adverse drug reactions
• Definitions and classification of ADRs
• Detection and reporting
• Methods in Causality assessment
• Severity and seriousness assessment
• Predictability and preventability assessment
• Management of adverse drug reactions

Basic terminologies used in pharmacovigilance
• Terminologies of adverse medication related events
• Regulatory terminologies

UNIT – II 10 Hrs

Drug and disease classification
• Anatomical, therapeutic and chemical classification of drugs
• International classification of diseases
• Daily defined doses
• International Non proprietary Names for drugs

Drug dictionaries and coding in pharmacovigilance
• WHO adverse reaction terminologies
• MedDRA and Standardised MedDRA queries
• WHO drug dictionary
• Eudravigilance medicinal product dictionary

Information resources in pharmacovigilance
• Basic drug information resources
- Specialised resources for ADRs

Establishing pharmacovigilance programme
- Establishing in a hospital
- Establishment & operation of drug safety department in industry
- Contract Research Organisations (CROs)
- Establishing a national programme

UNIT – III

Vaccine safety surveillance
- Vaccine Pharmacovigilance
- Vaccination failure
- Adverse events following immunization

Pharmacovigilance methods
- Passive surveillance – Spontaneous reports and case series
- Stimulated reporting
- Active surveillance – Sentinel sites, drug event monitoring and registries
- Comparative observational studies – Cross sectional study, case control study and cohort study
- Targeted clinical investigations

Communication in pharmacovigilance
- Effective communication in Pharmacovigilance
- Communication in Drug Safety Crisis management
- Communicating with Regulatory Agencies, Business Partners, Healthcare facilities & Media

UNIT – IV

Safety data generation
- Pre clinical phase
- Clinical phase
- Post approval phase (PMS)

ICH Guidelines for Pharmacovigilance
- Organization and objectives of ICH
- Expedited reporting
- Individual case safety reports
- Periodic safety update reports
- Post approval expedited reporting
- Pharmacovigilance planning
- Good clinical practice in pharmacovigilance studies

UNIT – V

Pharmacogenomics of adverse drug reactions
- Genetics related ADR with example focusing PK parameters.

Drug safety evaluation in special population
- Paediatrics
- Pregnancy and lactation
Recommended Books (Latest Editions):

2. Practical Drug Safety from A to Z by Barton Cobert, Pierre Biron, Jones and Bartlett Publishers.
9. National Formulary of India
10. Text Book of Medicine by Yashpal Munjal
11. Text book of Pharmacovigilance: concept and practice by GP Mohanta and PK Manna
15. http://cdsco.nic.in/

BP 806ET. QUALITY CONTROL AND STANDARDIZATION OF HERBALS
(Theory)

Hours per week: 3L+1T End Examination: 75 Marks
Credit: 4 Midsem: 25 Marks

Scope: In this subject the student learns about the various methods and guidelines for evaluation and standardization of herbs and herbal drugs. The subject also provides an opportunity for the student to learn cGMP, GAP and GLP in traditional system of medicines.

Objectives: Upon completion of the subject student shall be able to;

- know WHO guidelines for quality control of herbal drugs
- know Quality assurance in herbal drug industry
- know the regulatory approval process and their registration in Indian and international markets
- appreciate EU and ICH guidelines for quality control of herbal drugs
Course Content:

UNIT – I 10 Hrs
Basic tests for drugs – Pharmaceutical substances, Medicinal plants materials and dosage forms
WHO guidelines for quality control of herbal drugs.
Evaluation of commercial crude drugs intended for use

UNIT – II 10 Hrs
Quality assurance in herbal drug industry of cGMP, GAP, GMP and GLP in traditional system of medicine.
WHO Guidelines on current good manufacturing Practices (cGMP) for Herbal Medicines
WHO Guidelines on GACP for Medicinal Plants.

UNIT – III 10 Hrs
EU and ICH guidelines for quality control of herbal drugs.
Research Guidelines for Evaluating the Safety and Efficacy of Herbal Medicines

UNIT – IV 08 Hrs
Stability testing of herbal medicines.Application of various chromatographic techniques in standardization of herbal products.
Preparation of documents for new drug application and export registration
GMP requirements and Drugs & Cosmetics Act provisions.

UNIT – V 07 Hrs
Regulatory requirements for herbal medicines
WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems
Comparison of various Herbal Pharmacopoeias.
Role of chemical and biological markers in standardization of herbal products

Recommended Books: (Latest Editions)
1. Pharmacognosy by Trease and Evans
2. Pharmacognosy by Kokate, Purohit and Gokhale
5. EMEA. Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products,

BP 807ET. COMPUTER AIDED DRUG DESIGN (Theory)

Hours per week: 3L+1T
Credit: 4

End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to provide detailed knowledge of rational drug design process and various techniques used in rational drug design process.

Objectives: Upon completion of the course, the student shall be able to understand
- Design and discovery of lead molecules
- The role of drug design in drug discovery process
- The concept of QSAR and docking
- Various strategies to develop new drug like molecules.
- The design of new drug molecules using molecular modelling software

Course Content:

UNIT – I
Introduction to Drug Discovery and Development
Stages of drug discovery and development
Lead discovery and Analog Based Drug Design
Rational approaches to lead discovery based on traditional medicine, Random screening, Non-random screening, serendipitous drug discovery, lead discovery based on drug metabolism, lead discovery based on clinical observation.
Analog Based Drug Design: Bioisosterism, Classification, Bioisosteric replacement. Any three case studies

UNIT – II
Quantitative Structure Activity Relationship (QSAR)
SAR versus QSAR, History and development of QSAR, Types of physicochemical parameters, experimental and theoretical approaches for the determination of physicochemical parameters such as Partition coefficient, Hammet’s substituent constant and Tafts steric constant.
Hansch analysis, Free Wilson analysis, 3D-QSAR approaches like COMFA and COMSIA.

UNIT – III
Molecular Modeling and virtual screening techniques
Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening
Molecular docking: Rigid docking, flexible docking, manual docking, Docking based screening. De novo drug design.
UNIT – IV
Informatics & Methods in drug design
Introduction to Bioinformatics, chemoinformatics. ADME databases, chemical, biochemical and pharmaceutical databases

UNIT – V

Recommended Books (Latest Editions)

BP 808ET: CELL AND MOLECULAR BIOLOGY (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope:
- Cell biology is a branch of biology that studies cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division, death and cell function.
- This is done both on a microscopic and molecular level.
- Cell biology research encompasses both the great diversity of single-celled organisms like bacteria and protozoa, as well as the many specialized cells in multi-cellular organisms such as humans, plants, and sponges.

Objectives: Upon completion of the subject student shall be able to;
- Summarize cell and molecular biology history.
- Summarize cellular functioning and composition.
- Describe the chemical foundations of cell biology.
- Summarize the DNA properties of cell biology.
- Describe protein structure and function.
- Describe cellular membrane structure and function.
- Describe basic molecular genetic mechanisms.
- Summarize the Cell Cycle
Course content:

UNIT – I

a) Cell and Molecular Biology: Definitions theory and basics and Applications.
b) Cell and Molecular Biology: History and Summation.
c) Properties of cells and cell membrane.
d) Prokaryotic versus Eukaryotic
e) Cellular Reproduction
f) Chemical Foundations – an Introduction and Reactions (Types)

UNIT – II

a) DNA and the Flow of Molecular Information
b) DNA Functioning
c) DNA and RNA
d) Types of RNA
e) Transcription and Translation

UNIT – III

a) Proteins: Defined and Amino Acids
b) Protein Structure
c) Regularities in Protein Pathways
d) Cellular Processes
e) Positive Control and significance of Protein Synthesis

UNIT – IV

a) Science of Genetics
b) Transgenics and Genomic Analysis
c) Cell Cycle analysis
d) Mitosis and Meiosis
e) Cellular Activities and Checkpoints

UNIT – V

a) Cell Signals: Introduction
b) Receptors for Cell Signals
c) Signaling Pathways: Overview
d) Misregulation of Signaling Pathways
e) Protein-Kinases: Functioning

Recommended Books (Latest Editions):
6. Cooper and Gunn’s: Tutorial Pharmacy, CBS Publisher and Distribution.
7. Peppler: Microbial Technology.
9. N.K. Jain: Pharmaceutical Microbiology, Vallabh Prakashan, Delhi
10. Bergeys manual of systematic bacteriology, Williams and Wilkins- A Waverly company
12. RA Goldshy et. al.; Kuby Immunology.

BP 809ET. COSMETIC SCIENCE (Theory)

Hours per week: 3L+1T
End Examination: 75 Marks
Credit: 4
Midsem: 25 Marks

Course content:

UNIT – I
Classification of cosmetic and cosmeceutical products
Definition of cosmetics as per Indian and EU regulations, Evolution of cosmeceuticals from cosmetics, cosmetics as quasi and OTC drugs
Cosmetic excipients: Surfactants, rheology modifiers, humectants, emollients, preservatives. Classification and application
Skin: Basic structure and function of skin.
Hair: Basic structure of hair. Hair growth cycle.
Oral Cavity: Common problem associated with teeth and gums.

UNIT – II
Principles of formulation and building blocks of skin care products:
Face wash, Moisturizing cream, Cold Cream, Vanishing cream and their advantages and disadvantages. Application of these products in formulation of cosmecuticals.
Antiperspirants & deodorants - Actives & mechanism of action.
Principles of formulation and building blocks of Hair care products:
Conditioning shampoo, Hair conditioner, anti-dandruff shampoo.
Hair oils.
Chemistry and formulation of Para-phylene diamine based hair dye.
Principles of formulation and building blocks of oral care products:
Toothpaste for bleeding gums, sensitive teeth. Teeth whitening, Mouthwash.

UNIT – III
Sun protection, Classification of Sunscreens and SPF.
Role of herbs in cosmetics:
Skin Care: Aloe and turmeric
Hair care: Henna and amla.
Oral care: Neem and clove
Analytical cosmetics: BIS specification and analytical methods for shampoo, skincream and toothpaste.

UNIT – IV
UNIT – V

Oily and dry skin, causes leading to dry skin, skin moisturisation. Basic understanding of the terms Comedogenic, dermatitis.

Cosmetic problems associated with Hair and scalp: Dandruff, Hair fall causes

Cosmetic problems associated with skin: blemishes, wrinkles, acne, prickly heat and body odor.

References

BP 810ET. PHARMACOLOGICAL SCREENING METHODS (Theory)

Hours per week: 3L+1T
Credit: 4
End Examination: 75 Marks
Midsem: 25 Marks

Scope: This subject is designed to impart the basic knowledge of preclinical studies in experimental animals including design, conduct and interpretations of results.

Objectives
Upon completion of the course the student shall be able to,

- Appreciate the applications of various commonly used laboratory animals.
- Appreciate and demonstrate the various screening methods used in preclinical research
- Appreciate and demonstrate the importance of biostatistics and research methodology
- Design and execute a research hypothesis independently

Course content:

UNIT – I

Laboratory Animals:
Study of CPCSEA and OECD guidelines for maintenance, breeding and conduct of experiments on laboratory animals, Common lab animals: Description and applications of different species and strains of animals. Popular transgenic and mutant animals.

Techniques for collection of blood and common routes of drug administration in laboratory animals, Techniques of blood collection and euthanasia.

UNIT – II

Preclinical screening models
a. Introduction: Dose selection, calculation and conversions, preparation of drug solution/suspensions, grouping of animals and importance of sham negative and positive control groups.

Rationale for selection of animal species and sex for the study.

b. Study of screening animal models for

Diuretics, nootropics, anti-Parkinson’s, antiasthmatics,

Preclinical screening models: for CNS activity- analgesic, antipyretic, anti-inflammatory, general anaesthetics, sedative and hypnotics, antipsychotic, antidepressant, antiepileptic, antiparkinsonism, alzheimer’s disease.
UNIT – III 8 Hrs
Preclinical screening models: for ANS activity, sympathomimetics, sympatholytics, parasympathomimetics, parasympatholytics, skeletal muscle relaxants, drugs acting on eye, local anaesthetics

UNIT – IV 10 Hrs
Preclinical screening models: for CVS activity- antihypertensives, diuretics, antiarrhythmic, antidysetpidemic, anti aggregatory, coagulants, and anticoagulants Preclinical screening models for other important drugs like antiulcer, antidiabetic, anticancer and antiasthmatics.

UNIT – V 07 Hrs
Research methodology and Bio-statistics
Selection of research topic, review of literature, research hypothesis and study design
Pre-clinical data analysis and interpretation using Students ‘t’ test and One-way ANOVA.
Graphical representation of data

Recommended Books (Latest Editions):
1. Fundamentals of experimental Pharmacology by M. N. Ghosh
3. CPCSEA guidelines for laboratory animal facility.
4. Drug discovery and Evaluation by Vogel H. G.
5. Drug Screening Methods by Suresh Kumar Gupta and S. K. Gupta
6. Introduction to biostatistics and research methods by P. S. S. Sundar Rao and J. Richard

BP 811ET. ADVANCED INSTRUMENTATION TECHNIQUES (Theory)

<table>
<thead>
<tr>
<th>Hours per week: 3L+1T</th>
<th>End Examination: 75 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit: 4</td>
<td>Midsem: 25 Marks</td>
</tr>
</tbody>
</table>

Scope: This subject deals with the application of instrumental methods in qualitative and quantitative analysis of drugs. This subject is designed to impart advanced knowledge on the principles and instrumentation of spectroscopic and chromatographic hyphenated techniques. This also emphasizes on theoretical and practical knowledge on modern analytical instruments that are used for drug testing.

Objectives: Upon completion of the course the student shall be able to
- understand the advanced instruments used and its applications in drug analysis
- understand the chromatographic separation and analysis of drugs.
- understand the calibration of various analytical instruments
- know analysis of drugs using various analytical instruments.

Course Content:

UNIT – I 10 Hrs
Nuclear Magnetic Resonance spectroscopy
Principles of H-NMR and C-NMR, chemical shift, factors affecting chemical shift, coupling constant, Spin - spin coupling, relaxation, instrumentation and applications
Mass Spectrometry- Principles, Fragmentation, Ionization techniques – Electron impact, chemical ionization, MALDI, FAB, Analyzers - Time of flight and Quadrupole, instrumentation, applications.

UNIT – II

Thermal Methods of Analysis: Principles, instrumentation and applications of Thermogravimetric Analysis (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC).

X-Ray Diffraction Methods: Origin of X-rays, basic aspects of crystals, X-ray Crystallography, rotating crystal technique, single crystal diffraction, powder diffraction, structural elucidation and applications.

UNIT – III

Calibration and validation-as per ICH and USFDA guidelines

Calibration of following Instruments

Electronic balance, UV-Visible spectrophotometer, IR spectrophotometer, Fluorimeter, Flame Photometer, HPLC and GC

UNIT – IV

Radio immune assay: Importance, various components, Principle, different methods, Limitation and Applications of Radio immuno assay

Extraction techniques: General principle and procedure involved in the solid phase extraction and liquid-liquid extraction

UNIT – V

Hyphenated techniques-LC-MS/MS, GC-MS/MS, HPTLC-MS.

Recommended Books (Latest Editions)

1. Instrumental Methods of Chemical Analysis by B. K Sharma
2. Organic spectroscopy by Y. R. Sharma
3. Text book of Pharmaceutical Analysis by Kenneth A. Connors
4. Vogel’s Text book of Quantitative Chemical Analysis by A. I. Vogel
5. Practical Pharmaceutical Chemistry by A.H. Beckett and J. B. Stenlake
6. Organic Chemistry by I. L. Finar
7. Organic spectroscopy by William Kemp
8. Quantitative Analysis of Drugs by D. C. Garrett
9. Quantitative Analysis of Drugs in Pharmaceutical Formulations by P. D. Sethi
10. Spectrophotometric identification of Organic Compounds by Silverstein

BP 812ET. DIETARY SUPPLEMENTS AND NUTRACEUTICALS

Hours per week: 3L+1T

End Examination: 75 Marks

Credit: 4

Midsem: 25 Marks

Scope: This subject covers foundational topic that are important for understanding the need and requirements of dietary supplements among different groups in the population.

Objective: This module aims to provide an understanding of the concepts behind the theoretical applications of dietary supplements. By the end of the course, students should be able to
• Understand the need of supplements by different groups of people to maintain healthy life.
• Understand the outcome of deficiencies in dietary supplements.
• Appreciate the components in dietary supplements and the application.
• Appreciate the regulatory and commercial aspects of dietary supplements including health claims.

Course Content:

UNIT - I 07 Hrs
a. Definitions of Functional foods, Nutraceuticals and Dietary supplements. Classification of Nutraceuticals, Health problems and diseases that can be prevented or cured by Nutraceuticals i.e. weight control, diabetes, cancer, heart disease, stress, osteoarthritis, hypertension etc.
b. Public health nutrition, maternal and child nutrition, nutrition and ageing, nutrition education in community.
c. Source, Name of marker compounds and their chemical nature, Medicinal uses and health benefits of following used as nutraceuticals/functional foods: Spirulina, Soyabean, Ginseng, Garlic, Broccoli, Gingko, Flaxseeds

UNIT – II 15 Hrs
Phytochemicals as nutraceuticals: Occurrence and characteristic features (chemical nature medicinal benefits) of following
a) Carotenoids- α and β-Carotene, Lycopene, Xanthophylls, Leutin
b) Sulfides: Diallyl sulfides, Allyl trisulfide.
c) Polyphenolics: Reservetrol
d) Flavonoids- Rutin, Naringin, Quercitin, Anthocyanidins, Catechins, Flavones
e) Prebiotics / Probiotics: Fructo oligosaccharides, Lacto bacillum
f) Phyto estrogens: Isoflavones, Daidzein, Geebustin, Lignans
g) Tocopherols
h) Proteins, vitamins, minerals, cereal, vegetables and beverages as functional foods: oats, wheat bran, rice bran, sea foods, coffee, tea and the like.

UNIT – III 07 Hrs
a) Introduction to free radicals: Free radicals, reactive oxygen species, production of free radicals in cells, damaging reactions of free radicals on lipids, proteins, carbohydrates, nucleic acids.
b) Dietary fibres and complex carbohydrates as functional food ingredients..

UNIT – IV 10 Hrs
b) Antioxidants: Endogenous antioxidants – enzymatic and nonenzymatic antioxidant defence, Superoxide dismutase, catalase, Glutathione peroxidase, Glutathione, Vitamin C, Vitamin E, α- Lipoic acid, melatonin
Synthetic antioxidants: Butylated hydroxy Toluene, Butylated hydroxy Anisole.
c) Functional foods for chronic disease prevention

UNIT – V 06 Hrs
a) Effect of processing, storage and interactions of various environmental factors on the potential of nutraceuticals.
b) Regulatory Aspects; FSSAI, FDA, FPO, MPO, AGMARK. HACCP and GMPs on Food Safety. Adulteration of foods.
c) Pharmacopoeial Specifications for dietary supplements and nutraceuticals.

References:
1. Dietetics by Sri Lakshmi
2. Role of dietary fibres and nutraceuticals in preventing diseases by K. T Agusti and P. Faizal: BS Publication.